COST ANALYSIS OF STRUCTURAL AND MEP WORKS IN THE THIRD PHASE OF THE GALAXY BEKASI HOSPITAL PROJECT

FINAL PROJECT

Submitted in Partial Fulfillment of the Requirements for the Degree of Diploma III in the Department of Quantity Surveying Faculty of Civil Engineering and Planning, Bung Hatta University

By:
FEORD ANINDHYTO. KR
2110015410012

DEPARTMENT OF QUANTITY SURVEYING
CIVIL ENGINEERING AND PLANNING FACULTY
BUNG HATTA UNIVERSITY
PADANG
2024

APPROVAL PAGE FOR THIS FINAL PROJECT

COST ANALYSIS OF STRUCTURAL AND MEP WORKS IN THE THIRD PHASE OF THE GALAXY BEKASI HOSPITAL PROJECT

By:

FEORD ANINDHYTO. KR 2110015410012

Approved by:

Supervising Lecture

(Nursyam Saleh, SH, M.Eng)

Endorsed by:

Civil Engineering And Planning

Faculty

Dean of Faculty

Endorsed by:

Department of Quantity

Surveying

Head of QS Department

(Dr. Al Busyra Fuadi, ST., M.Sc.)

(Dr. Wahyudi P. Utama, B.OS., MT)

COST ANALYSIS OF STRUCTURAL AND MEP WORKS IN THE THIRD PHASE OF THE GALAXY BEKASI HOSPITAL PROJECT

Feord Anindhyto, Nursyam Saleh
Department of Quantity Surveying, Civil Engineering And Planning Faculty
Bung Hatta University

ABSTRACT

The Final Project is one of the graduation requirements for the Diploma III Quantity Surveying Department at Bung Hatta University, Padang. This report discusses about calculation of structure and MEP work, bill of quantity, time schedule, and cashflow in the Galaxy Bekasi Hospital project. This project is the third phase is constructing a new building with a total area of 6598,2 square meters, comprising eight floors and one rooftop, has a contract value of 44.450.000.000 rupiah, with a division of 35% for structure works and 25% for MEP works. The calculation and analysis included calculating the bill of quantity using the detailed estimation calculation method. formulating the time schedule, and preparing the cash flow. Quantities are taken from drawings and measured directly with the help of AutoCAD and PlanSwift applications. The cost of materials and wages used in analyzing project costs is based on the unit price of labor and materials in Bekasi City in 2024. This calculation shows that the costs for structure and MEP works, comprising foundations, pile caps, tie beams, columns, beams, slabs, stairs, steel structure, clean water installations, dirty water installations, rainwater installations, electrical installations, lighting, HVAC, security system, sound systems, fire protection, and internet system (before VAT) is estimated at Rp. 23.433.100.701,38. Based on the calculation of the detailed estimate, a time schedule is in the form of an S curve and cash flow. The Galaxy Bekasi Hospital project's third phase has a project duration of 11 months. The payment system for this project is monthly progress with an advance payment of 20% and a retention of 5%.

Keywords: structure works, mep, time schedule, s curved, cash flow, planswift, autocad, monthly progress, calculate, measurement

ACKNOWLEDGE

All the praise goes to Allah SWT, the Almighty, for blessing, love, opportunity, health, and mercy, so I accomplished my final assessment with the title "COST ANALYSIS OF STRUCTURAL AND MEP WORKS IN THE THIRD PHASE OF THE GALAXY BEKASI HOSPITAL PROJECT". This final assessment is one of the compulsory courses in the sixth semester and also one of the requirements for completing lectures in the Quantity Surveying Department at Bung Hatta University.

On this occasion the author would like to express his gratitude to all those who have helped in completing this Final Assessment. So that this Final Assessment can be completed accordingly and on time. The author would like to express his gratitude to:

- 1. Allah SWT, the Almighty, who has given His strength and blessings, so that the author can complete this report.
- 2. Beloved parents and family who always provide prayers and endless support and encouragement.
- 3. Mr. Nursyam Saleh S.H, M.Eng as a supervisor in writing this report which always provides direction and guidance and gives the confidence to complete this report well.
- 4. Mr. / Mrs. Lecturers in the Department of Quantity Surveyor who has guided and taught us all this time so that we can be up to now.
- 5. QS 21 colleagues who have helped provide encouragement and inspiration for the author.

Considering the many problems and shortcomings encountered in the process of writing the Final Project, the author is aware that there are still many mistakes and shortcomings in the Final Project. Therefore, the author expects constructive suggestions and criticism from the readers to improve the quality of this Final Project. Hopefully, this Final Project can be useful and increase the knowledge, especially in the field of Construction Economics Engineering (QS).

TABLE OF CONTENT

APPROVAL PAGE	i
ABSTRACT	j
ACKNOWLEDGE	i
TABLE OF CONTENT	ii
TABLE OF FIGURES	iv
LIST OF TABLE	v
LIST OF APPENDICES	vii
CHAPTER I INTRODUCTION	1
1.1 Background of Research	1
1.2 Identification of the Problem	2
1.3 Purpose of the Research	3
1.4 Scope of Research	3
1.5 Benefits of Research	4
1.6 Writing Systematics	4
CHAPTER II PROJECT DATA	5
2.1 General Project Data	5
2.2 Type of Contract	<i>6</i>
2.3 Type of Payment	8
2.4 Height and Area of Building	9
2.5 Parties Involved	9
2.6 Project Specification	12
CHAPTER III CALCULATION AND ANALYSIS	14
3.1 Introduction	14
3.2 Quantity Take Off	14
3.3 Bottom Structure	14
3.3.1 Bore Pile Work	15
3.3.2 Pile Cap Works	18
3.3.3 Tie Beam Works	20
3.3.4 Pit Lift Works	24
3.4 Upper Structure	31
3.4.1 Column Works	31
3.4.2 Slab Works	34

3.4.3 Beam Works	37
3.3.5 Stairs Works	42
3.3.6 Steel Structure Works	47
3.4 Plumbing Works	48
3.4.1 Clean Water	48
3.4.2 Waste Water	50
3.4.3 Sewage Water	51
3.4.4 Rain Water	51
3.4.5 Vent Pipe	52
3.5 Electrical	53
3.5.1 Electrical Installation	53
3.5.2 Lighting Installation	54
3.5.3 Switch and Outlet Installation	55
3.6 Mechanical	56
3.6.1 Fire Protection	56
3.6.2 HVAC	58
3.6.3 Sound System	60
3.6.4 PABX	60
3.6.5 MATV	61
3.6.6 Security System	62
3.6.7 Internet System	62
3.7 Recapitulation of Volume	63
3.8 Bill of Quantity	63
3.8.1 Unit Price of Labor and Materials	65
3.8.2 Work Unit Price Analysis	66
3.8.3 Time Schedule	67
3.9 Cash Flow	70
CHAPTER IV CONCLUSIONS AND SUGGESTIONS	73
4.1 Conclusion	73
4.2 Suggestion	74
LITEDATIDE	76

TABLE OF FIGURES

Figure 2. 1 Project Location	5
Figure 3. 1 Details of Foundation Reinforcement	
Figure 3. 2 Details of Pile Cap Reinforcement	
Figure 3. 3 Tie Beam Measurement on Planswift	
Figure 3. 4 Details of Tie Beam Reinforcement	23
Figure 3. 5 Detail of Shear Wall Reinforcement	
Figure 3. 6 Beam Measurement on Planswift	
Figure 3. 7 Detail of Beam Reinforcement	
Figure 3. 8 Stairs Section Drawing	
Figure 3. 9 Stairs Detail	
Figure 3. 10 Rooftop Steel Structure	
Figure 3. 11 Clean Water Pipe Measurement on Planswift	
Figure 3. 12 Waste Water Planswift Measurement	
Figure 3. 13 Cable Tray Measurement	
Figure 3. 14 Sprinkler and Hydrant Pipe Measurement on Planswift	

LIST OF TABLE

Table 2. 1 Project Specification	12
Table 3. 1 Foundation Measurement Format	15
Table 3. 2 Foundation Reinforcement Measurement Format	17
Table 3. 3 Pile Cap Measurement Format	18
Table 3. 4 Pile Cap Reinforcement Measurement Format	19
Table 3. 5 Tie Beam Measurement Format	21
Table 3. 6 Tie Beam Reinforcement Measurement Format	23
Table 3. 7 Shear Wall Measurement Format	25
Table 3. 8 Shear Wall Reinforcement Measurement Format	26
Table 3. 9 Beam Work on Pit Lift Measurement Format	27
Table 3. 10 Beam Work on Pit Lift Reinforcement Measurement Format	29
Table 3. 11 Column Work on Pit Lift Measurement Format	30
Table 3. 12 Column Measurement Format	32
Table 3. 13 Column Reinforcement Measurement Format	33
Table 3. 14 Slab Measurement Format	35
Table 3. 15 Slab Reinforcement Measurement Format	36
Table 3. 16 Beam Measurement Format	38
Table 3. 17 Beam Reinforcement Measurement Format	40
Table 3. 18 Stairs Measurement Format	42
Table 3. 19 Bordes Reinforcement Work	
Table 3. 20 Stairs Slab Reinforcement Format	45
Table 3. 21 Stair Step Reinforcement Format	
Table 3. 22 Steel Structure Measurement Format	47
Table 3. 23 Clean Water Pipe Measurement	
Table 3. 24 Clean Water Accessories	49
Table 3. 25 Waste Water Pipe Measurement	
Table 3. 26 Sewage Water Pipe Measurement	51
Table 3. 27 Dirty Water Accessories	51
Table 3. 28 Rain Water Pipe Measurement	52
Table 3. 29 Vent Pipe Measurement	
Table 3. 30 Electrical Work Measurement	53
Table 3. 31 Lighting Installation	55
Table 3. 32 Switch and Outlet Installation	55
Table 3. 33 Fire Alarm Installation	56
Table 3. 34 Hydran and Sprinkler Pipe	
Table 3. 35 AC unit Installation.	58
Table 3. 36 Drain Pipe for Air Conditioner	59
Table 3. 37 Exhaust Fan Installation	59
Table 3. 38 Sound System Installation	
Table 3. 39 PABX Installation	61
Table 3. 40 MATV Installation	61
Table 3. 41 CCTV Installation	62
Table 3. 42 Internet System Installation	62

Table 3. 43 Work Volume Recapitulation	63
Table 3. 44 Bill of Quantity	64
Table 3. 45 List of Labor and Material Price Bekasi 2024	65
Table 3. 46 Work Unit Analysis	66
Table 3. 47 Bill of Quantity Recapitulation	67
Table 3. 48 S Curved Time Schedule	70
Table 3. 49 Time Schedule	70
Table 3. 50 Cash Flow	72

LIST OF APPENDICES

Appendix 1: Recapitulation of BOQ

Appendix 2: Bill of Quantity

Appendix 3: Unit Price Analysis

Appendix 4: Labor and Material Price

Appendix 5: Time Schedule

Appendix 6: Cashflow

Appendix 7: Recapitulation of Volume

Appendix 8: Volume calculation

CHAPTER I

INTRODUCTION

1.1 Background of Research

A construction project can be defined as a series of activities that are carried out on a one-time basis and have a limited duration. In this series of activities, a process is employed whereby project resources are transformed into an activity result in the form of a building. Construction projects can be characterized by three key dimensions: uniqueness, resource involvement, and organizational complexity (Ervianto, 2005). Additionally, the completion process is subject to three constraints, collectively known as the "triple constraint," which include adherence to specifications, time scheduling, and cost planning. These constraints must be met simultaneously.

Ervianto (2005) identifies three characteristics of construction projects:

- a. Projects are unique. Construction projects are not identical; each project comprises a distinct set of activities.
- b. Projects are temporary. Construction projects are time-limited, and the workforce involved is always changing.
- c. Construction projects require The construction of any given project necessitates the input of a number of resources, including the input of workers and the input of "things" (money, machines, methods, materials).

In the construction industry, many professionals are required to achieve the desired outcome, like an architect and civil engineer. One such role is that of a quantity surveyor (QS). A quantity surveyor is a construction industry professional with expert knowledge of construction costs and contracts. Their responsibilities include calculating the volume and cost of a building and managing all aspects of the contractual and financial aspects of a construction project. According to the Royal Institution of Chartered Surveyors (RICS) in 1971, "A quantity surveyor is an expert in measurement and assessment in the field of construction so that work can be described and price costs can be estimated, analyzed, planned, controlled, and accounted for". With all the skills that a quantity surveyor has, the project's

owner will trust the construction project to them. QS has a very important role in construction as they are responsible for overseeing the financial aspects of a project, including pricing and cost management.

The hospital is an essential building for human civilization. That is the place where people get treatment when they are sick. Because of that, the construction of the hospital project has to calculate and measure the volume of the building precisely. If they are not calculated correctly, that project may fail or even be stalled. That's why QS is critical in keeping the project running correctly.

A building is comprised of several key components, including its structure, architectural, mechanical, electrical, plumbing, and landscaping elements. The combination of all these components determines the cost of a building. To illustrate, the structure works comprise a foundation, tie beam, pile cap, column, beam, slabs, and stairs. The mechanical, electrical, and plumbing work is comprised of clean water installations, dirty water installations, rainwater installations, electrical installations, lighting, HVAC, security systems, sound systems, and fire protection. The architectural work is comprised of wall, ceiling, door and window frame, and floor.

The title that will be raised in this discussion is "Cost Analysis Of Structure And MEP Works In The Third Phase Of The Galaxy Bekasi Hospital Project" with the scope of structure work being foundations, pile caps, tie beams, columns, beams, slab, and stairs. For MEP, there are clean water installations, dirty water installations, rainwater installations, electrical installations, lighting, HVAC, security systems, sound systems, and fire protection. In this case, the skill of a quantity surveyor is needed because they have accuracy and some experience in calculating the cost of building a project.

1.2 Identification of the Problem

The problems that will be discussed in this final assessment are:

1. How to calculate a building volume on the structure and mechanical, electrical, and plumbing (MEP) works in the third phase of the galaxy bekasi hospital project?

- 2. How to make a Bill of Quantity (BOQ)?
- 3. How to make a time schedule according to BOQ, and what is the function?
- 4. How to make cash flow according to time schedule

1.3 Purpose of the Research

The purposes of this research are:

- 1. Calculating the volume of structure and MEP works in the third phase of the galaxy bekasi hospital project.
- 2. Make a bill of quantity of structure and MEP works in the third phase of the galaxy bekasi hospital project.
- 3. Make a time schedule for structure and MEP works in the third phase of the galaxy bekasi hospital project.
- 4. Make a cash flow of structure and MEP works in the third phase of the galaxy bekasi hospital project.

1.4 Scope of Research

This final assessment will be limited to cost analysis of structure works comprising a foundation, pile caps, and tie beams as the bottom structure. There are columns, beams, slab, stairs, and an attic steel structure as the upper structure. In regard to MEP, there are a number of installations, including clean water, waste water, sewage water, rainwater, electrical, lighting, HVAC, security systems, sound systems, fire protection, and internet system in the third phase of the galaxy bekasi hospital project with a total area of 6598,2 square meters comprising eight floors and rooftop.

The calculation will start from volume measurement, calculating the bill of quantity, planning for time schedule and cash flow according to the shop drawing and specification of the building. This research used analysis of unit price analysis (AHSP) on Regulation of the Minister of Public Works and Housing (PERMEN *PUPR*) number 8 of 2023.

The purpose of this limited scope is to avoid the deviation from the issue raised, so that the discussion in this report does not deviate from the original purpose.

1.5 Benefits of Research

The benefit of this final assessment is to increase expertise as a quantity surveyor in calculating estimates, both volume and bill of quantity, time schedules, and cash flows. A quantity surveyor must be thorough when measuring and knowledgeable about the cost of a construction project.

1.6 Writing Systematics

There are four chapters in this final assessment.

CHAPTER I: INTRODUCTION

This chapter discusses the background of the research, the identification of the problem, the purpose, the benefits of the research, and writing systematics.

CHAPTER II: PROJECT DATA

This chapter discusses general data and a short description of the project. It comprises the project name, contract value, working schedule, scope of works, payment system, advance payment, retention, defects liability period, and the area of the building.

CHAPTER III: CALCULATIONS AND ANALYSIS

This chapter discusses measurement in quantity takeoff, unit price analysis, bill of quantity, time schedule, and cash flow.

CHAPTER IV: CONCLUSION AND SUGGESTION

The conclusion is made according to the identification of the problem, and the advice is compiled based on Chapter III.