SKRIPSI PRA RANCANGAN PABRIK GAMMA ALUMINA DARI GIBBSITE KAPASITAS 180.000 TON/TAHUN

Oleh:

BARLIAN SYAIDI (2210017411031)

Sebagai Salah Satu Syarat Untuk Meraih Gelar Sarjana Pada Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Bung Hatta

> UNIVERSITAS BUNG HATTA SEPTEMBER 2024

LEMBAR PENGESAHAN SKRIPSI

PRA RANCANGAN PABRIK GAMMA ALUMINA DARI *GIBBSITE* KAPASITAS 180.000 TON/TAHUN

OLEH:

BARLIAN SYAIDI

2210017411031

Disetujui Oleh:

Pembimbing

Dr. Maria Ulfah, S.T., M.T.

Diketahui Oleh:

Fakultas Teknologi Indusri

B Dekan

Jurusan Teknik Kimia

Ketua

Prof. Dr. Eng. Ir. Reni Desmiarti, S.T., M.T.

Dr. Firdaus, S,T., M.,T.

i

UNIVERSITAS BUNG HATTA

DAFTAR ISI

	Halaman
LEMBAR PENGESAHAN	i
KATA PENGANTAR	ii
INTISARI	iv
DAFTAR ISI	v
DAFTAR TABEL	vii
DAFTAR GAMBAR	xi
DAFTAR LAMPIRAN	xiv
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Kapasitas Pabrik	2
1.3 Lokasi Pabrik	3
BAB II TINJAUAN PUSTAKA	11
2.1 Tinjauan Umum	11
2.1 Tinjauan Proses	14
2.2 Sifat Kimia dan Fisika	15
2.3 Spesifikasi Bahan Baku dan Produk	17
BAB III TAHAPAN DAN DESKRIPSI PROSES	19
3.1 Tahapan Proses	19
3.2 Deskripsi Proses	21
BAB IV NERACA MASSA DAN ENERGI	25
4.1 Neraca Massa	25
4.2 Neraca Energi	36
5.1 Unit Penyediaan Listrik	
5.2 Unit Penyediaan Air	41
5.2 Unit Penyediaan Steam	50
5.3 Unit Pengolahan Limbah	51
BAB VI SPESIFIKASI PERALATAN	53
6.1 Spesifikasi Peralatan Utama	53
6.2 Spesifikasi Peralatan Utilitas	75

BAB VII TATA LETAK PABRIK DAN K3LH (KES	EHATAN,
KESELAMATAN KERJA DAN LINGKUNGAN HIDUI	P)89
7.1 Tata Letak Pabrik	89
7.2 Kesehatan dan Keselamatan Kerja Lingkungan Hidup	93
BAB VIII ORGANISASI PERUSAHAAN	104
8.1 Bentuk Perusahaan	104
8.2 Struktur Organisasi	105
8.3 Tugas dan Wewenang	106
8.4 Sistem Kepegawaian dan Gaji	111
8.5 Sistem Kerja	111
8.6 Jumlah Karyawan	112
8.7 Kesejahteraan Sosial Karyawan	113
BAB IX ANALISA EKONOMI	117
9.1 Total Capital Investment	117
9.2 Biaya Produksi (Total Production Cost)	118
9.3 Harga Jual (Total Sales)	118
9.4 Tinjauan Kelayakan Pabrik	119
BAB X TUGAS KHUSUS	121
10.1 Pendahuluan	121
10.2 Ruang Lingkup Rancangan	121
10.3 Rancangan	122
10.4 Hasil Validasi Simulasi Superpro Bagian Tugas Khusus	152
BAB XI KESIMPULAN	157
11.1 Kesimpulan	157
11.2 Saran	158
DAFTAR PUSTAKA	159
LAMPIRAN A	
LAMPIRAN B	
LAMPIRAN C	
LAMPIRAN D	

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu negara penghasil bauksit terbesar didunia, pada tahun 2020 Indonesia berada pada urutan nomor enam sebagai negara penyedia bahan baku bauksit dengan total 1200 juta ton/tahun. Alumina (Al₂O₃) terdapat sebagai alumina hidrat dan alumina anhidrat. Alumina anhidrat, Al₂O₃, terdapat dalam bentuk alumina stabil berupa α -alumina dan alumina metastabil yaitu, gamma alumina (γ - Al₂O₃), delta alumina (Λ - Al₂O₃), theta alumina (θ - Al₂O₃), kappa alumina (κ - Al₂O₃) dan chi alumina (χ - Al₂O₃), sedangkan hidratnya berada dalam bentuk aluminium hidroksida seperti gibsite, bayerit, boehmite dan diaspore. Aluminium hidroksida merupakan komponen utama di dalam bauksit, sehingga umumnya alumunium hidroksida dibuat dari bauksit, sedangkan alumina anhidrat dibuat dari dehidrasi aluminium hidroksida. Di alam alumina anhidrat juga terdapat sebagai mineral korundum (Ulyani, 2008; Utari, 1994).

Berdasarkan Undang-Undang Pertambangan No. 4 Tahun 2009 tentang Pertambangan Mineral dan Batubara, produk pertambangan Indonesia yang salah satunya bauksit tidak diizinkan dieskspor dalam produk mentah, tetapi harus dilakukan pengolahan sehingga menjadi produk jadi atau setengah jadi. Pada juni 2023 pemerintah menghentikan ekspor bauksit. Mengikuti peraturan tersebut, Perusahaan-perusahaan manufaktur mendirikan pabrik pengolah bauksit,

Produksi bauksit terbesar diolah oleh PT ICA (Indonesia Chemical Alumina) dengan berbagai jenis hidrat alumina dan alumina. Karakteristik beberapa hidrat alumina cocok dijadikan sebagai bahan untuk sintesis γ-Al₂O₃. Gamma alumina digunakan sebagai penyangga katalis karena memiliki luas permukaan yang stabil, kekuatan tekan yang tinggi, debu dan abrasi rendah. Selain dijadikan katalis, gamma alumina biasanya digunakan juga sebagai bahan pemurnian knalpot kendaraan, elektronik, pengikat fosfor, pelapis dan bahan lainnya.

Pada tahun 2022 Indonesia sedang membangun pabrik pembuatan katalis yaitu PT KSI (Katalis Sinergi Indonesia) dengan mengolah gamma alumina dengan bahan baku boehmite yang masih diimpor. Saat ini, produsen dan pemasok katalis di Indonesia masih sangat sedikit sehingga potensi pengembangan inovasi katalis

dalam negeri sangat besar dan harus dimaksimalkan oleh para pelaku bisnis yang memang ahli dan memiliki kekuatan dalam bidang katalis. PT KSI yang akan beroperasi pada tahun 2023 dengan kapasitas pengolahan pabrik 800 ton/tahun. Produk hasil pengolahan akan distribusikan ke PT Pertamina. Pada saat ini tercatat gamma alumina dari Indonesia belum ada diekspor keluar karena kurangnya pabrik yang menghasilkan produk tersebut.

Memenuhi kebutuhan pasar dan adanya peraturan pemerintah yang tidak memperbolehkan ekspor bauksit, maka dari itu perlu didirikannya pabrik pembuatan gamma alumina dari gibbsite dengan kapasitas 180.000 ton/tahun. Pengolahan dimulai dengan sintesis gibbsite menjadi boehmite dengan proses hidrotermal. Tujuan sinstesis ini yaitu mengurangi kebutuhan impor boehmite. Boehmite yang sudah disintesa menggunakan metode hidrotermal kemudian disintesis menjadi gamma alumina.

Pembuatan gamma alumina Gamma alumina disintesis melalui rute: Gibbsitte (Al(OH) $_3$ \rightarrow Boehmite (AlOOH) \rightarrow Gamma alumina (γ – Al2O3).

1.2 Kapasitas

1.2.1 Ketersediaan Bahan Baku

Ketersediaan bahan baku terdapat pada **Tabel 1.1** Sebagai berikut:

Tabel 1.1 Ketersediaan Bahan Baku Gibbsite

Bahan Baku	Nama Perusahaan	Lokasi	Kapasitas
			(Ton/Tahun)
	PT. Indonesia Chemical Alumina	Kalimantan Barat	300.000
Gibbsite	PT.Antam	Kalimantan Barat	300.000
	PT.Bintan Alumina Indonesia	Kepulauan Riau	265.000

Ketersediaan bahan penolong terdapat pada Tabel 1.2 sebagai berikut:

Tabel 1.2 Ketersediaan Bahan Penolong

Bahan Baku	Nama Perusahaan	Lokasi	Kapasitas (Ton/Tahun)
	Multi Nitrotama Kimia	Jakarta	55.000
	PT. Black Bear Resource	Bontang, Kalimantan	82.000
Asam Nitrat	Indonesia	Timur	
	PT Kaltim <i>Nitrate</i> Indonesia	Kalimantan Timur	700.000
	PT. Multi Nitrotama Kimia	Jawa Barat	55.000
Ammonia	PT Pupuk Kalimantan Timur	Kalimantan Timur	59.600
	PT Kaltim Pasifik Amoniak	Kalimantan Timur	660.000

1.2.2 Kapasitas Rancangan Pabrik Gamma Alumina

Dalam menentukan kapasitas pabrik suatu industri, memperhatikan Teknik, finansial sangat diutamakan. dan ekonomis Caranya memperkirakan kebutuhan baku untuk tahun yang akan dating. Pabrik Gamma Alumina direncanakan akan berdiri pada tahun 2025. Kapasitas perancangan pabrik ini direncanakan dengan pertimbangan pengolahan bauksit di PT Indonesia Chemical Alumina (PT ICA) yang memiliki kapasitas produksi yaitu 300.000 ton/tahun. Berdasarkan fungsi dari gamma alumina yang bukan hanya untuk katalis maka dari itu, sebanyak 60% dari 300.000 ton/tahun menjadi acuan kapasitas pendirian pabrik. Persentase ini bertujuan agar lebih banyak memproduksi gamma alumina dan bisa memasuki tahap ekspor. Kapasitas produksi pengolahan gamma alumina dari gibbsite yaitu 180.000 ton/tahun.

1.3 Lokasi Pabrik

Penentuan lokasi pabrik sangat mempengaruhi keberlangsungan produksi maupun distribusi produk. Maka dari itu pemilihan lokasi harus mempertimbangkan biaya produksi yang minim.

1.3.1 Lokasi Alternatif 1 Kendawangan, Kalimantan Barat, Indonesia

Lokasi pabrik alternatif di Kendawan terdapat pada Gambar 1.1

Gambar 1.1 Lokasi Pabrik kendawan, Kalimanta Barat

Sumber: maps.google.com

Kota Kendawangan adalah sebuah kota kecil di Kalimantan Barat Indonesia. Kendawangan adalah sebuah kota kecil yang berada di ujung selatan provinsi Kalimantan Barat. Luas wilayah 7.120 km², jumlah penduduk 181.585 jiwa. Pertambangan dan perkebunan merupakan bidang yang paling banyak

menyumbang kas daerah. Pertambangan yang ada di Kendawangan adalah timah hitam, emas, intan, biji besi, alumunium (bauksit), nikel, dll. Sedangkan untuk sektor Perkebunan. Pembagian wilayahya pertambangan 34%, perkebunan 52%, pemukiman 6% dan lain-lain 8%.

Pemilihan lokasi berdasarkan Analisa SWOT (*Strengh, Weakness, Opportunities, Threat*). Data Analisa SWOT dapat dilihat dibawah ini.

Tabel 1.3 Data Analisa SWOT Lokasi Kota Kendawangan

Variabel	Internal		Eksternal	
	Strengh	Weakness	Opportunity	Threat
	(kekuatan)		(kelemahan) (Peluang)	
Bahan Baku	Memiliki bidang	Ketergantungan	Ketersediaan bahan	Banyaknya pesaing bahan
	pertambangan 34%	industri bahan baku	baku yang sangat	baku
			banyak	
Pemasaran	Kendawangan memiliki	Biaya distribusi yang	Berpeluang untuk	Banyaknya isu lingkungan
	sebuah Pelabuhan	besar karena	Kerjasama domestik	jika penambangan selalu
	Domestik.	kendawangan sebuah	dan asing karena	merusak lingkungan
		kota kecil	banyak di daerah ini	
Utilitas	Dekat dengan PLTU	Daerah wilayah	Meningkatnya	Isu lingkungan yang
	Sukabangun, Sumber air	supply bahan bakar	efektifitas kerja	beranggapan bahwa
	dapat dibuat sendiri.	berada agak jauh dari		kegiatan penambangan
		daerah ini maka akan		selalu merusak dan
		menambah biaya		merugikan lingkungan
		pengeluaran		
		Perusahaan		
Tenaga Kerja	Sumber daya manusia	Kurang tenaga kerja	Bisa menambah	Meyakinkan masyarakat
	banyak	yang mumpuni dan	lapangan pekerjaan	daerah agar menerima
		terlatih	bagi penduduk sekitar	tenaga kerja dari luar
Kondisi	Jauh dari konflik,	Wilayah yang rawan	Banyaknya lahan	Adanya bencana alam
Daerah	lingkungan sangat kondusif	gempa dan banjir kosong		

1.3.2 Lokasi Alternatif 2 Laman Bumbung Menukung, Kalimantan Barat Lokasi pabrik alternatif 2 dapat dilihat pada **Gambar 1.2**

Gambar 1.2 Lokasi Pabrik Menukung, Kalimantan Barat

Sumber: maps.google.com

Menukung adalah sebuah kecamatan di kabupaten Melawi, Kalimantan Barat, Indonesia. Kecamatan Menukung terletak di tepi sungai Melawi, Menukung merupakan pusat kota kecamatan dengan jumlah 46 kampung dari 19 desa yang ada di wilayah kecamatan dan mayoritas suku dayak (Dayak Ransa, Dayak Kenyilu, Dayak Limbai dan juga Melayu) sedangkan pendatang yaitu Cina dan Padang.

Luas wilayah kecamatan Menukung adalah 1.062 km². Kecamatan Menukung terbagi menjadi 19 desa. Desa terluas adalah Desa Laman Mumbung dengan luas 96 km² atau 9,01 persen dari luas Kecamatan Menukung, sedangkan desa terkecil adalah Desa Oyah dengan luas 30 km² atau 2,79 persen dari luas Kecamatan Menukung.

Pemilihan lokasi berdasarkan Analisa SWOT (*Strengh*, *Weakness*, *Opportunities*, *Threat*). Data Analisa SWOT dapat dilihat dibawah ini.

Tabel 1.4 Data Analisa SWOT Lokasi Laman Bumbung, Menukung

	Internal		Eksternal	
Variabel	Strengh	Weakness	Opportunity	Threat
	(kekuatan)	(kelemahan)	(Peluang)	(Tantangan)
Bahan Baku	Dekat dengan Pabrik PT	Ketergantungan	Ketersediaan bahan	Banyaknya pesaing bahan
	Bintan Alumina Indonesia	industry bahan baku	baku yang sangat	baku
		•	banyak	
Pemasaran	Lebih diketahui negara	Biaya	Berpeluang untuk	Banyaknya isu lingkungan
	luar karena sebagai daerah	pendistirbusian besar	Kerjasama domestik	jika penambangan selalu
	penghasil timah terbesar		dan asing.	merusak lingkungan
Utilitas	Dekat dengan PLN,	Debit air yang	Meningkatnya	Terkendala saat air sungai
	Terletak ditepi sungai	fluktuatif	efektifitas kerja	kering
	melawi, difasilitasi			
	PDAM			
Tenaga Kerja	Sumber daya manusia	Kurang tenaga kerja	Bisa menambah	Meyakinkan masyarakat
	yang banyak	yang professional	lapangan pekerjaan	daerah agar menerima
			bagi penduduk sekitar	tenaga kerja dari luar
Kondisi Daerah	Aman	Wilayah rawan	Banyaknya lahan	Adanya bencana alam
		bencana banjir dan	kosong	
		kebakaran hutan		

1.3.3 Lokasi Alternatif 3 Lokasi alternatif (Gunung Kijang, Kec. Gunung Kijang, Kabupaten Bintan, Provinsi Kepulauan Riau)

Lokasi pabrik alternatif 3 dapat dilihat pada Gambar 1.3

Gambar 1.3 Lokasi Pabrik Gunung Kijang, Kepulauan Riau Sumber: maps.google.com

Jumlah sumber daya bauksit di Kepulauan Riau diperkirakan mencapai 180,97 juta ton. Daerah yang masih menyimpan sumber daya bauksit paling besar adalah Kabupaten Lingga dengan jumlah 168,96 juta ton. Sisanya tersebar di sejumlah wilayah dengan jumlah yang relatif kecil. Penambangan bauksit di pulau Bintan telah dieksploitasi sejak zaman penjajahan Belanda, salah satunya oleh perusahaan NV Nibem. Saat ini, bauksit di kelola PT. Aneka Tambang, Tbk sebanyak 10 juta. Sekitar, 3.835.500 ton merupakan endapan yang belum dieksploitasi, terutama di kecamatan Bintan Utara, kabupaten Riau, pulau Kundur dan kabupaten Karimun.

Total cadangan bauksit sebanyak 15.880.000 ton terdapat di Pulau Bintan dan Tanjungpinang Luasan bauksit di Kepulauan Riau tersebar di tiga kabupaten dan satu kota. Gunung Kijang adalah sebuah kecamatan di Kabupaten Bintan, Kepulauan Riau, Indonesia. Pemilihan lokasi berdasarkan Analisa SWOT (Strengh, Weakness, Opportunities, Threat). Data Analisa SWOT dapat dilihat dibawah ini.

Tabel 1.5 Analisa SWOT Lokasi Gunung Kijang, Kec. Gunung Kijang, Kabupaten Bintan, Provinsi Kepulauan Riau

	Internal		Eksternal	
Variabel	Strength	Weaknees	Opportunity	Threat
	(Kekuatan)	(Kelemahan)	(Peluang)	(Tantangan)
Bahan baku	Memiliki lahan pertambangan sendiri	Ketergantungan industri terhadap bahan baku	Ketersedian bahan baku sangat banyak dan dekat dengan pabrik	Terdapat pesaing bahan baku dengan industri lain
Pemasaran	Pendistribusin dekat dengan pelabuhan KEK galang batang	Biaya pendistribusian cukup besar	Peluang besar untuk investasi domestik dan asing terhadap Gamma alumina yang cukup besar di kepulauan Riau	Peningkatan pemasaran impor dan ekspor
Utilitas	Pengolahan air terintegrasi yang dekat dengan sungai gunung kijang	Debit air yang cenderung kurang stabil	Efektifitas kerja meningkat dalam keberlangsungan kegiatan industry	Isu perizinan dan lingkungan yang beranggapan kegiatan penambangan berdampak merugikan lingkungan
Tenaga kerja	Sumber daya manusia sebagai tenaga kerja yang memadai denga jumlah penduduk yang banyak. Didapatkan dari sekolah setempat serta perkerja yang terlatih	Kurangnya tenaga kerja yang berkopentensi	Tenaga kerja yang terdidik dan berpengalaman	Perusahan memberikan pelatihan khusus dan selalu <i>development</i> dengan baik
Kondisi daerah	Lokasi yang strategis dan stabil sehingga terdapat bencana alam	Wilayah rawan bencana alam	Banyak lahan yang kosong dan kondisi alam yang stabil	Ancaman bencana alam (tsunami, gempa bumi, dll)

Pemilihan lokasi pabrik gamma alumina, berdasarkan analisa SWOT terhadap bahan baku, pemasaran, tenaga kerja, utilitas dan kondisi daerah. Pemilihan lokasi pabrik, yang disajikan pada **Tabel 1.6** sebagai berikut:

Tabel 1.6 Analisis Lokasi Pabrik Gamma Alumina

Lokasi Variabel	Alternatif lokasi 1 (Kendawangan, Kalimantan Barat,)	Alternatif lokasi II (Laman Bumbung Menukung, Kalimantan Barat)	Alternatif lokasi III (Gunung Kijang, Provinsi Kepulauan Riau)
Lokasi Bahan Baku	5	5	3
Pemasaran	5	5	3
Tenaga Kerja	5	4	5
Utilitas	5	5	5
UMK	4	3	5
Total	24	22	21

Pada **Tabel 1.6** diatas penilaian dilakukan dengan cakupan range 1-5, dimana:

1 = Sangat Tidak Baik 3 = Cukup 5 = Sangat Baik

2 = Tidak Baik 4 = Baik

Dari hasil analisa SWOT dan skala likert pada tabel diatas, maka daerah yang akan dipilih sebagai lokasi pendirian pabrik Gamma alumina adalah alternatif lokasi 1 (Kendawangan, Kalimantan Barat).