BAB IV
ANALISA DAN PERHITUNGAN

4.1 Analisa Data Curah Hujan

4.1.1 Analisa Curah Hujan Metode Poligon Thiessen

Untuk perhitungan curah hujan rencana ini digunakan data curah hujan dari 3 stasiun curah hujan, dengan memakai data curah hujan selama 12 tahun yaitu dari tahun 2007 sampai tahun 2018, seperti terlampir dalam tabel berikut:

Metode poligon Thiessen digunakan rumus yaitu:

\[\bar{R} = \frac{R_A \cdot A_A + R_B \cdot A_B + R_C \cdot A_C + R_D \cdot A_D + \ldots + R_n \cdot A_n}{A} \]

Dimana:

- \(\bar{R} \) = Tinggi curah hujan rata-rata (mm)
- \(R_A, R_B, R_C, R_D, \ldots, R_n \) = Curah hujan maximum pada stasiun A, B, C, D, \ldots, n
- \(A_1, A_2, A_3, A_4 \ldots \) = Luas daerah yang terwakili oleh stasiun A, B, C, D, \ldots, n
- \(A \) = Luas catchment area (km²)

Berikut perhitungan curah hujan metode poligon Thiessen pada 10 April 2007 yaitu:

- Curah hujan pada stasiun pengamatan
 - \(R_{Danau Atas} = 255 \) mm
 - \(R_{Ladang Padi} = 0 \) mm
 - \(R_{Sumani} = 6.3 \) mm

- Luas daerah yang mempengaruhi Catchment area (A)
 - \(A_{Danau Atas} = 38,0 \) km²
 - \(A_{Ladang Padi} = 42,0 \) km²
 - \(A_{Sumani} = 21,0 \) km²

Sehingga didapat,

\[R = \frac{(255,0 \times 38,0) + (0 \times 42,0) + (6.3 \times 21,0)}{(38,0 + 42,0 + 21,0)} = 97,25 \text{mm} \]
Koefisien Thiessen

Gambar 4.1 poligon thiessen dari peta topografi

a. Stasiun Danau Diatas = \(\frac{38.0 \text{ km}^2}{101.0 \text{ km}^2} = 0.4 \)

b. Stasiun Ladang Padi = \(\frac{42.0 \text{ km}^2}{101.0 \text{ km}^2} = 0.4 \)

\[= 1 \]

c. Stasiun Sumani = \(\frac{21.0 \text{ km}^2}{101.0 \text{ km}^2} = 0.2 \)

Perhitungan selanjutnya ditabelkan.

Tabel 4.1 Perhitungan curah hujan metode poligon Thiessen

<table>
<thead>
<tr>
<th>Tgl</th>
<th>Bulan</th>
<th>Tahun</th>
<th>Stasiun Pengamatan</th>
<th>Curah Hujan (mm)</th>
<th>Hujan Maksimum (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Apr</td>
<td>2007</td>
<td>Danau Diatas</td>
<td>0.376</td>
<td>97.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ladang Padi</td>
<td>0.416</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sumani</td>
<td>0.208</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Jun</td>
<td></td>
<td>255.0</td>
<td>0.0</td>
<td>31.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Apr</td>
<td></td>
<td>67.0</td>
<td>31.0</td>
<td>34.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Des</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>Des</td>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Feb</td>
<td>16.0</td>
<td>80</td>
<td>3.1</td>
<td>39.93</td>
</tr>
<tr>
<td>10</td>
<td>Agust</td>
<td>0.0</td>
<td>0.0</td>
<td>127.5</td>
<td>26.51</td>
</tr>
<tr>
<td>6</td>
<td>Apr</td>
<td>78</td>
<td>30.0</td>
<td>0.0</td>
<td>41.82</td>
</tr>
<tr>
<td>6</td>
<td>Jan</td>
<td>3.0</td>
<td>145</td>
<td>0.0</td>
<td>61.43</td>
</tr>
<tr>
<td>26</td>
<td>Mar</td>
<td>25.0</td>
<td>25.0</td>
<td>143.1</td>
<td>49.56</td>
</tr>
<tr>
<td>3</td>
<td>Apr</td>
<td>67</td>
<td>76.0</td>
<td>47.2</td>
<td>66.63</td>
</tr>
<tr>
<td>24</td>
<td>Feb</td>
<td>0.0</td>
<td>109</td>
<td>0.0</td>
<td>45.33</td>
</tr>
<tr>
<td>5</td>
<td>Mar</td>
<td>0.0</td>
<td>15.0</td>
<td>100.5</td>
<td>27.13</td>
</tr>
<tr>
<td>22</td>
<td>Mei</td>
<td>64</td>
<td>11.7</td>
<td>0.0</td>
<td>28.94</td>
</tr>
<tr>
<td>22</td>
<td>Jun</td>
<td>0.0</td>
<td>118</td>
<td>0.0</td>
<td>49.07</td>
</tr>
<tr>
<td>21</td>
<td>Sept</td>
<td>9.0</td>
<td>18.0</td>
<td>66.8</td>
<td>24.76</td>
</tr>
<tr>
<td>3</td>
<td>Mei</td>
<td>107</td>
<td>0.0</td>
<td>0.0</td>
<td>40.26</td>
</tr>
<tr>
<td>24</td>
<td>Jul</td>
<td>0.0</td>
<td>117</td>
<td>1.3</td>
<td>48.92</td>
</tr>
<tr>
<td>31</td>
<td>Okt</td>
<td>0.0</td>
<td>39.0</td>
<td>88.1</td>
<td>34.54</td>
</tr>
<tr>
<td>12</td>
<td>Jul</td>
<td>55</td>
<td>7.5</td>
<td>11.0</td>
<td>26.10</td>
</tr>
<tr>
<td>3</td>
<td>Des</td>
<td>0.0</td>
<td>125</td>
<td>13.0</td>
<td>54.68</td>
</tr>
<tr>
<td>24</td>
<td>Mar</td>
<td>0.0</td>
<td>45.0</td>
<td>214</td>
<td>63.21</td>
</tr>
<tr>
<td>22</td>
<td>Nov</td>
<td>42</td>
<td>23.0</td>
<td>33.4</td>
<td>32.31</td>
</tr>
<tr>
<td>30</td>
<td>Okt</td>
<td>9.0</td>
<td>125</td>
<td>4.3</td>
<td>56.26</td>
</tr>
<tr>
<td>31</td>
<td>Okt</td>
<td>30.2</td>
<td>79.0</td>
<td>97.6</td>
<td>64.51</td>
</tr>
<tr>
<td>27</td>
<td>Nov</td>
<td>68</td>
<td>1.0</td>
<td>6.9</td>
<td>27.43</td>
</tr>
<tr>
<td>3</td>
<td>Nov</td>
<td>30.0</td>
<td>76</td>
<td>15.2</td>
<td>46.05</td>
</tr>
<tr>
<td>26</td>
<td>Apr</td>
<td>0.0</td>
<td>26.0</td>
<td>73.1</td>
<td>26.01</td>
</tr>
<tr>
<td>7</td>
<td>Feb</td>
<td>75.3</td>
<td>42.0</td>
<td>68.5</td>
<td>60.04</td>
</tr>
<tr>
<td>7</td>
<td>Okt</td>
<td>3.0</td>
<td>118</td>
<td>3.1</td>
<td>50.84</td>
</tr>
<tr>
<td>17</td>
<td>Jul</td>
<td>56.4</td>
<td>18.0</td>
<td>79</td>
<td>45.13</td>
</tr>
<tr>
<td>27</td>
<td>Nov</td>
<td>80</td>
<td>68.0</td>
<td>21.9</td>
<td>62.93</td>
</tr>
<tr>
<td>9</td>
<td>Okt</td>
<td>27.0</td>
<td>122</td>
<td>60.89</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Mar</td>
<td>0.0</td>
<td>26.0</td>
<td>75.5</td>
<td>26.51</td>
</tr>
<tr>
<td>26</td>
<td>Mar</td>
<td>69</td>
<td>25.0</td>
<td>75.5</td>
<td>52.05</td>
</tr>
<tr>
<td>10</td>
<td>Des</td>
<td>37.0</td>
<td>192</td>
<td>24.0</td>
<td>98.75</td>
</tr>
<tr>
<td>2</td>
<td>Des</td>
<td>0.0</td>
<td>0.0</td>
<td>78</td>
<td>16.22</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)
Tabel 4.2 Hujan maksimum harian DAS Batang Lembang

<table>
<thead>
<tr>
<th>No.</th>
<th>Waktu Kejadian</th>
<th>Hujan Maksimum (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tanggal</td>
<td>Bulan</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>Apr</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>Feb</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Jan</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Apr</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>Jun</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>Jul</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>Mar</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
<td>Okt</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Nov</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Feb</td>
</tr>
<tr>
<td>11</td>
<td>27</td>
<td>Nov</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>Des</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

4.1.2 Analisis Curah Hujan Rencana

Untuk mendapatkan besarnya debit banjir rencana berdasarkan data hujan, perlu dilakukan terlebih dahulu analisis. Analisis yang digunakan adalah analisis statistik distribusi curah hujan harian maksimum, Untuk memperoleh distribusi frekuensi, metode yang umum dipakai untuk menentukan curah hujan rencana adalah distribusi Normal, Gumbel, Log Normal dan Log Pearson tipe III.

4.1.2.1 Distribusi Probabilitas Normal

Perhitunganhujanrencanaberdasarkanprobabilitas normal, jika data yang digunakan adalah berupa sampel, dilakukan dengan rumus sebagai berikut:

\[X_T = \bar{X} + K_T \cdot SD \]

Perhitungan ditabelkan.
<table>
<thead>
<tr>
<th>No.</th>
<th>Tahun</th>
<th>Xi (mm)</th>
<th>(Xi – X̅)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007</td>
<td>97.25</td>
<td>1157.66</td>
</tr>
<tr>
<td>2</td>
<td>2008</td>
<td>39.93</td>
<td>542.63</td>
</tr>
<tr>
<td>3</td>
<td>2009</td>
<td>61.43</td>
<td>3.24</td>
</tr>
<tr>
<td>4</td>
<td>2010</td>
<td>66.63</td>
<td>11.56</td>
</tr>
<tr>
<td>5</td>
<td>2011</td>
<td>49.07</td>
<td>200.42</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>48.92</td>
<td>204.56</td>
</tr>
<tr>
<td>7</td>
<td>2013</td>
<td>63.21</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>2014</td>
<td>64.51</td>
<td>1.64</td>
</tr>
<tr>
<td>9</td>
<td>2015</td>
<td>46.05</td>
<td>294.97</td>
</tr>
<tr>
<td>10</td>
<td>2016</td>
<td>60.04</td>
<td>10.16</td>
</tr>
<tr>
<td>11</td>
<td>2017</td>
<td>62.93</td>
<td>0.09</td>
</tr>
<tr>
<td>12</td>
<td>2018</td>
<td>98.75</td>
<td>1262.12</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>758.71</td>
<td>3689.04</td>
</tr>
<tr>
<td>X̅</td>
<td></td>
<td>63.23</td>
<td></td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

Curah hujan rata-rata (\bar{X}) = \[\frac{\sum_{i=1}^{n} X_i}{n} = \frac{758.71}{12} \]

= 63.23 mm

Standar deviasi (SD) = \[\sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}} \]

= \[\sqrt{\frac{3689.04}{12-1}} \] = 18.31 mm

Nilai K_T didapat berdasarkan periode ulang tahun (T) yaitu:

$T = 2$ maka $K_T = 0$ (Lampiran tabel variabel reduksi Gauss pada Tabel 2.3)

Perhitungan curah hujan rencana periode ulang 2 tahun yaitu:

$X_2 = \bar{X} + K_T \cdot SD$

= 63.23 mm + (0 \times 18.31)

= 63.23 mm

Perhitungan selanjutnya ditabelkan.
<table>
<thead>
<tr>
<th>No.</th>
<th>Periode ulang (T)</th>
<th>$X_{\bar{}}$ (mm)</th>
<th>K_T</th>
<th>X_T (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>63.23</td>
<td>0</td>
<td>63.23</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>63.23</td>
<td>0.84</td>
<td>78.61</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>63.23</td>
<td>1.28</td>
<td>86.67</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>63.23</td>
<td>1.64</td>
<td>93.26</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>63.23</td>
<td>1.71</td>
<td>94.54</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>63.23</td>
<td>2.05</td>
<td>100.77</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>63.23</td>
<td>2.33</td>
<td>105.90</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)

4.1.2.2 Distribusi Probabilitas Gumbel

Jika data hujan yang digunakan dalam perhitungan adalah berupa sampel (populasi terbatas), maka perhitungan hujan rencana berdasarkan Distribusi Probabilitas Gumbel.

Curah hujan pada periode ulang (X_T) yaitu :

$$\overline{X} = \frac{\sum X_i}{n}$$

Standar deviasi (SD) = \[\sqrt{\frac{(X_i - \overline{X})^2}{n-1}} \]

Dimana :

\overline{X} = Curah hujan rata-rata (mm)

n = Jumlah data

SD = Standar deviasi

Besarnya curah hujan rencana dihitung dengan rumus :

$$X_T = \overline{X} + \left(\frac{Y_T - Y_n}{S_n}\right) \times SD$$

Dimana :

X_T = Curah hujan harian rencana dengan periode ulang T tahun (mm)

\overline{X} = Curah hujan harian rata-rata (mm)

SD = Standar deviasi
Sn = Reduced standar deviasi
Yt = Reduced variate
Yn = Reduced mean

Untuk nilai Sn, Yt, Yn digunakan Tabel.

Perhitungan curah hujan disajikan dalam tabel.

Curah hujan rata-rata (\(\bar{X} \)) = \(\frac{\sum X_i}{n} = \frac{758.71}{12} \) = 63.23 mm

Standar deviasi SD = \(\sqrt{\frac{(X_i - \bar{X})^2}{n-1}} \) = \(\sqrt{\frac{3689.04}{12-1}} \) = 18.31 mm

Tabel 4.5 Perhitungan curah hujan rencana

<table>
<thead>
<tr>
<th>No.</th>
<th>Rangking (mm)</th>
<th>((X)\bar{=} = \frac{\sum X_i}{n})</th>
<th>(Xi-(X)\bar{})</th>
<th>(Xi-X)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.75</td>
<td>63.23</td>
<td>35.53</td>
<td>1262.12</td>
</tr>
<tr>
<td>2</td>
<td>97.25</td>
<td>63.23</td>
<td>34.02</td>
<td>1157.66</td>
</tr>
<tr>
<td>3</td>
<td>66.63</td>
<td>63.23</td>
<td>3.40</td>
<td>11.56</td>
</tr>
<tr>
<td>4</td>
<td>64.51</td>
<td>63.23</td>
<td>1.28</td>
<td>1.64</td>
</tr>
<tr>
<td>5</td>
<td>63.21</td>
<td>63.23</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>62.93</td>
<td>63.23</td>
<td>-0.30</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>61.43</td>
<td>63.23</td>
<td>-1.80</td>
<td>3.24</td>
</tr>
<tr>
<td>8</td>
<td>60.04</td>
<td>63.23</td>
<td>-3.19</td>
<td>10.16</td>
</tr>
<tr>
<td>9</td>
<td>49.07</td>
<td>63.23</td>
<td>-14.16</td>
<td>200.42</td>
</tr>
<tr>
<td>10</td>
<td>48.92</td>
<td>63.23</td>
<td>-14.30</td>
<td>204.56</td>
</tr>
<tr>
<td>11</td>
<td>46.05</td>
<td>63.23</td>
<td>-17.17</td>
<td>294.97</td>
</tr>
<tr>
<td>12</td>
<td>39.93</td>
<td>63.23</td>
<td>-23.29</td>
<td>542.63</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

Untuk, n = 12 tahun; didapat Yn = 0,5035; Sn = 0,9833
untuk, t = 2 tahun; Yt = 0,3065
untuk, t = 5 tahun; Yt = 1,4999
untuk, \(t = 10 \) tahun ; \(Y_t = 2,2504 \)
untuk, \(t = 20 \) tahun ; \(Y_t = 2,9702 \)
untuk, \(t = 25 \) tahun ; \(Y_t = 3,1985 \)
untuk, \(t = 50 \) tahun ; \(Y_t = 3,9019 \)
untuk, \(t = 100 \) tahun ; \(Y_t = 4,6001 \)

Sehingga, curah hujan periode ulang dengan metode Gumbel yaitu :
\[
X_t = 63,23 + \left(\frac{0,3065 - 0,5035}{0,9833} \right) \times 18,31
\]
\[
= 59,56 \text{ mm}
\]
Perhitungan selanjutnya ditabelkan.

<table>
<thead>
<tr>
<th>No.</th>
<th>Periode ulang (tahun)</th>
<th>Sn</th>
<th>SD</th>
<th>Yn</th>
<th>Yt</th>
<th>(X_T) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5035</td>
<td>0.3065</td>
<td>59.56</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5035</td>
<td>1.4999</td>
<td>81.78</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5035</td>
<td>2.2504</td>
<td>95.76</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5035</td>
<td>2.9702</td>
<td>109.17</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5035</td>
<td>3.1255</td>
<td>112.06</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5035</td>
<td>3.9019</td>
<td>126.52</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0.9833</td>
<td>18.31</td>
<td>0.5022</td>
<td>4.6001</td>
<td>139.55</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)

4.1.2.3 Metode Distribusi Log Normal

Perhitungan hujan rencanaberdasarkan probabilitas Log Normal, Jika data yang digunakan berupa sampel.Untuk perhitungan digunakan rumus sebagai berikut:
\[
\text{Log} X_T = \text{Log} \overline{X} + (K_T \times S \text{ Log} X)
\]

Dimana :
\[
\text{Log} X_T = \text{Nilai Logaritma hujan rencana periode ulang T tahun}
\]
\[
\text{Log} \overline{X} = \text{Nilai rata-rata Log X (mm)}
\]
\[
S \text{ Log} X = \text{Standar deviasi dari Log X (mm)}
\]
$K_T = \text{Nilai } K_T \text{ didapat berdasarkan periode ulang tahun (T) yaitu:}$

$T = 2 \quad \text{maka } K_T = 0 \quad (\text{Lampiran tabel variabel reduksi Gauss})$

Perhitungan curah hujan rencana Log Normal yaitu:

Log 97,25 = 1,99mm

$\bar{\log X} = \frac{\sum \log X_i}{n} = \frac{21.43}{12} = 1,79 \text{ mm}$

$S \log X = \sqrt{\frac{(\log X_i - \bar{\log X})^2}{n-1}} = \sqrt{\frac{0.154}{12-1}} = 0,118 \text{ mm}$

$\log X_2 = 1,79 + (0 \times 0,118) = 1,79 \text{ mm}$

$X_2 = 10^{1.79} = 61.66 \text{ mm}$

Perhitungan selanjutnya ditabelkan.

Tabel 4.7 Parameter statistik metode Distribusi Log Normal

<table>
<thead>
<tr>
<th>No.</th>
<th>Xi (mm)</th>
<th>Log Xi</th>
<th>$(\log X_i - \bar{\log X})^2$</th>
<th>$(\log X_i - (\bar{\log X})^2)2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.25</td>
<td>1.99</td>
<td>0.20</td>
<td>0.041</td>
</tr>
<tr>
<td>2</td>
<td>39.93</td>
<td>1.60</td>
<td>-0.18</td>
<td>0.034</td>
</tr>
<tr>
<td>3</td>
<td>61.43</td>
<td>1.79</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>66.63</td>
<td>1.82</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>49.07</td>
<td>1.69</td>
<td>-0.09</td>
<td>0.009</td>
</tr>
<tr>
<td>6</td>
<td>48.92</td>
<td>1.69</td>
<td>-0.10</td>
<td>0.009</td>
</tr>
<tr>
<td>7</td>
<td>63.21</td>
<td>1.80</td>
<td>0.02</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>64.51</td>
<td>1.81</td>
<td>0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>9</td>
<td>46.05</td>
<td>1.66</td>
<td>-0.12</td>
<td>0.015</td>
</tr>
<tr>
<td>10</td>
<td>60.04</td>
<td>1.78</td>
<td>-0.01</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>62.93</td>
<td>1.80</td>
<td>0.01</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>98.75</td>
<td>1.99</td>
<td>0.21</td>
<td>0.044</td>
</tr>
<tr>
<td>\sum</td>
<td>758.71</td>
<td>21.43</td>
<td></td>
<td>0.154</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)
Tabel 4.8 Perhitungan hujan rencana Distribusi Log Normal

<table>
<thead>
<tr>
<th>No.</th>
<th>Periode ulang (T)</th>
<th>K_T</th>
<th>Log X_T</th>
<th>X_T (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1,79</td>
<td>61,66</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0,84</td>
<td>1,89</td>
<td>77,62</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1,28</td>
<td>1,94</td>
<td>87,09</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>1,64</td>
<td>1,98</td>
<td>95,49</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>1,71</td>
<td>1,99</td>
<td>97,72</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>2,05</td>
<td>2,04</td>
<td>109,65</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>2,33</td>
<td>2,06</td>
<td>114,82</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

4.1.2.4 Metode Distribusi Log Pearson Tipe III

Perhitungan hujan rencana berdasarkan probabilitas Log Pearson Tipe III, Jika data yang digunakan berupa sampel. Untuk perhitungan digunakan rumus sebagai berikut:

\[
\text{Log } X_T = \overline{\text{Log } X} + (K_T \times S \text{ Log } X)
\]

Dimana :

- \(\text{Log } X_T\) = Nilai Logaritma hujan rencana periode ulang T tahun
- \(\overline{\text{Log } X}\) = Nilai rata-rata Log X (mm)
- \(S \text{ Log } X\) = Standar deviasi dari Log X (mm)
- \(K_T\) = Variabel standar didapat berdasarkan koefisien kemecengan (Cs atau G)

Tabel 4.9 Parameter statistik metode Distribusi Log Pearson Tipe III

<table>
<thead>
<tr>
<th>No.</th>
<th>Xi (mm)</th>
<th>Log Xi</th>
<th>(Log Xi - \overline{\text{Log } X_i})^2</th>
<th>(Log Xi - \overline{\text{Log } X_i})^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.25</td>
<td>1.99</td>
<td>0.041</td>
<td>0.008</td>
</tr>
<tr>
<td>2</td>
<td>39.93</td>
<td>1.60</td>
<td>0.034</td>
<td>-0.006</td>
</tr>
<tr>
<td>3</td>
<td>61.43</td>
<td>1.79</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>66.63</td>
<td>1.82</td>
<td>0.001</td>
<td>0.000</td>
</tr>
</tbody>
</table>

UNIVERSITAS BUNG HATTA
Perhitungan curah hujan rencana metode Log Pearson Tipe III yaitu:

\[
\log X̅ = \frac{\sum \log X_i}{n} = 1.79 \text{ mm}
\]

\[
S \log X = \sqrt{\frac{\sum (\log X_i - \bar{X})^2}{n-1}} = \sqrt{0.154} = 0.118 \text{ mm}
\]

\[
C_s = \frac{n \sum_{i=1}^{n} (\log X_i - \bar{X})^3}{(n-1)(n-2)(S \log X)^3} = \frac{12 \times (0.008)}{(12-1) \times (12-2) \times (0.118)^3} = 0.5
\]

Nilai \(K_T \) dihitung berdasarkan nilai \(T \) dan nilai \(C_s \) atau \(C \) dari tabel kemecengan dengan \(C_s = 0.5 \) didapatkan nilai \(K_T \) yaitu:

- \(T = 2 \) tahun maka \(K_T = -0.083 \)
- \(T = 5 \) tahun maka \(K_T = 0.808 \)
- \(T = 10 \) tahun maka \(K_T = 1.323 \)
- \(T = 25 \) tahun maka \(K_T = 1.910 \)
- \(T = 50 \) tahun maka \(K_T = 2.311 \)
- \(T = 100 \) tahun maka \(K_T = 2.686 \)
Log \(X_2 \) = 1,79 + (0,083 x 0,118) = 1,799 = 1.8mm
\(X_2 \) = 10^{1,8} = 63,09 mm

Perhitungan selanjutnya ditabelkan.

Tabel 4.10 Perhitungan hujan rencana Log Pearson Tipe III

<table>
<thead>
<tr>
<th>No.</th>
<th>Periode ulang (T)</th>
<th>(K_T)</th>
<th>Log (X_T)</th>
<th>(X_T) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0,083</td>
<td>1,8</td>
<td>63,09</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0,808</td>
<td>1,86</td>
<td>72,44</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1,323</td>
<td>1,95</td>
<td>89,13</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>1,910</td>
<td>2,02</td>
<td>104,71</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>2,311</td>
<td>2,06</td>
<td>114,82</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>2,686</td>
<td>2,11</td>
<td>128,82</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)

4.2 Uji Distribusi Probabilitas

Uji Distribusi Probabilitas dimaksudkan untuk mengetahui apakah persamaan distribusi probabilitas yang dipilih dapat mewakili distribusi statistik sampel datayang dianalisis.

4.2.1 Uji Chi – Kuadrat (\(X^2 \))

Rumus yang digunakan dalam perhitungan dengan metode uji chi kuadrat adalah sebagai berikut:

\[
X^2 = \sum_{i=1}^{n} \frac{(Of - Ef)}{Ef}
\]

Dimana:
\(\chi^2 \) = Parameter chi kuadrat terhitung
\(Ef \) = Frekuensi yang diharapkan sesuai dengan pembagian kelasnya
\(Of \) = Frekuensi yang diamati pada kelas yang sama
\(n \) = Jumlah sub kelompok

Derajat nyata atau drajat kepercayaan (\(\infty \)) tertentu yang sering diambil adalah 5%. Drajat kebebasan (Dk) dihitung dengan rumus:
Dk = k – (p + 1)
K = 1 + 3,3 log n

Dimana:
Dk = Derajat kebebasan
P = Banyaknya parameter, untuk Chi kuadrat adalah 2
K = Jumlah kelas distribusi
n = Banyaknya data

Selanjutnya distribusi probabilitas yang dipakai untuk menentukan curah hujan rencana adalah distribusi probabilitas yang mempunyai simpangan maksimum terkecil dan lebih kecil dari simpangan kritis.
χ² < χ² kritis

Dimana:
χ² = Parameter Chi kuadrat terhitung
χ² cr = Parameter Chi kuadrat kritis (Tabel)

(a. Menghitung parameter statistik X rata-rata dan standar deviasi.

Tabel 4.11 Data curah hujan yang diurutkan dari besar ke kecil

<table>
<thead>
<tr>
<th>No.</th>
<th>Xi (mm)</th>
<th>Peringkat</th>
<th>(\frac{m}{n+1})</th>
<th>T = 1/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.75</td>
<td>1</td>
<td>0,08</td>
<td>13,00</td>
</tr>
<tr>
<td>2</td>
<td>97.25</td>
<td>2</td>
<td>0,15</td>
<td>6,50</td>
</tr>
<tr>
<td>3</td>
<td>66.63</td>
<td>3</td>
<td>0,23</td>
<td>4,33</td>
</tr>
<tr>
<td>4</td>
<td>64.51</td>
<td>4</td>
<td>0,31</td>
<td>3,25</td>
</tr>
<tr>
<td>5</td>
<td>63.21</td>
<td>5</td>
<td>0,38</td>
<td>2,60</td>
</tr>
<tr>
<td>6</td>
<td>62.93</td>
<td>6</td>
<td>0,46</td>
<td>2,17</td>
</tr>
<tr>
<td>7</td>
<td>61.43</td>
<td>7</td>
<td>0,54</td>
<td>1,86</td>
</tr>
<tr>
<td>8</td>
<td>60.04</td>
<td>8</td>
<td>0,62</td>
<td>1,63</td>
</tr>
<tr>
<td>9</td>
<td>49.07</td>
<td>9</td>
<td>0,69</td>
<td>1,44</td>
</tr>
<tr>
<td>10</td>
<td>48.92</td>
<td>10</td>
<td>0,77</td>
<td>1,30</td>
</tr>
<tr>
<td>11</td>
<td>46.05</td>
<td>11</td>
<td>0,85</td>
<td>1,18</td>
</tr>
<tr>
<td>12</td>
<td>39.93</td>
<td>12</td>
<td>0,92</td>
<td>1,08</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)
b. **Menghitung jumlah kelas**

Jumlah data (n) = 12

Kelas distribusi (K) = 1 + 3,3 log n

= 1 + 3,3 log 12 = 5 kelas

c. **Menghitung derajat kebebasan (DK) dan X^2 cr**

Parameter (P) = 2

Derajat kebebasan (DK) = K – (P+1)

= 5 – (2 + 1) = 2

Nilai X^2 cr dengan jumlah data (n) = 12, α = 5 % dan Dk = 2 adalah 5,991 (tabel)

d. **Menghitung kelas distribusi**

Kelas distribusi = \frac{1}{5} \times 100 \%= 20 \%

Interval distribusi yaitu 20 \%, 40 \%, 60 \%, 80 \%.

- **Persentase 20\%**

P(x) = 20 \% diperoleh T = 1/Px = 1/0,20 = 5 tahun

- **Persentase 40\%**

P(x) = 40 \% diperoleh T = 1/Px = 1/0,40 = 2,5 tahun

- **Persentase 60\%**

P(x) = 60 \% diperoleh T = 1/Px = 1/0,60 = 1,67 tahun

- **Persentase 80\%**

P(x) = 80 \% diperoleh T = 1/Px = 1/0,80 = 1,25 tahun

e. **Menghitung kelas interval**

1) **Distribusi Probabilitas Normal**

Nilai K_T didapat berdasarkan periode ulang tahun (T) yaitu :

<table>
<thead>
<tr>
<th>T</th>
<th>K_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 tahun</td>
<td>0,84</td>
</tr>
<tr>
<td>2,5 tahun</td>
<td>0,25</td>
</tr>
<tr>
<td>1,67 tahun</td>
<td>-0,25</td>
</tr>
<tr>
<td>1,25 tahun</td>
<td>-0,84</td>
</tr>
</tbody>
</table>
Nilai \(\bar{x} \) = 63,23 mm
Nilai SD = 18.31 mm

Interval kelas:
\[X_T = \bar{x} + K_T \cdot SD \]
\[X_5 = 63,23 + (0.84 \times 18.31) = 78.61 \text{ mm} \]
\[X_{2.5} = 63,23 + (0.25 \times 18.31) = 67.81 \text{ mm} \]
\[X_{1.67} = 63,23 + (-0.25 \times 18.31) = 58.65 \text{ mm} \]
\[X_{1.25} = 63,23 + (-0.84 \times 18.31) = 47.85 \text{ mm} \]

2) Distribusi Probabilitas Gumbel
Dengan jumlah data (n) = 12, berdasarkan tabel nilai reduced standard deviation (Sn) dan nilai reduced mean (Yn), maka didapat nilai,

\[Y_n = 0,5035 \text{ dan } S_n = 0,9833 \]

\[Y_t = -\ln (-\ln \left(\frac{T - 1}{T} \right)) \]
\[K = \frac{Y_t - Y_n}{S_n} = \frac{Y_t - 0,5035}{0,9833} \]

Sehingga didapat:
\[T = 5 \text{ tahun} \quad Y_t = 1,4999 \quad \text{maka } K = 1,013 \]
\[T = 2,5 \text{ tahun} \quad Y_t = 0,6717 \quad \text{maka } K = 0,171 \]
\[T = 1,67 \text{ tahun} \quad Y_t = 0,0907 \quad \text{maka } K = -0,419 \]
\[T = 1,25 \text{ tahun} \quad Y_t = -0,4759 \quad \text{maka } K = -0,996 \]

Maka interval kelas yaitu:
\[X_T = \bar{x} + K_T \cdot SD \]
\[X_5 = 63,23 + (1,013 \times 18.31) = 81.78 \text{ mm} \]
\[X_{2.5} = 63,23 + (0,171 \times 18.31) = 66.36 \text{ mm} \]
\[X_{1.67} = 63,23 + (-0.419 \times 18.31) = 55.56 \text{ mm} \]
\[X_{1.25} = 63,23 + (-0.996 \times 18.31) = 44.99 \text{ mm} \]
3) Distribusi Probabilitas Log Normal

Nilai K_T didapat berdasarkan periode ulang tahun (T) yaitu:

- T = 5 tahun maka $K_T = 0,84$ (Lampiran tabel variabel reduksi Gauss)
- T = 2,5 tahun maka $K_T = 0,25$
- T = 1,67 tahun maka $K_T = -0,25$
- T = 1,25 tahun maka $K_T = -0,84$

\[\overline{\log X_i} = 1,79 \text{ mm} \]
\[S \log X = 0,118 \text{ mm} \]

Maka interval kelas yaitu:

\[\text{Log } X_T = \overline{\log X} + (K_T \times S \log X) \]

\[\log X_5 = 1,79 + (0,84 \times 0,118) = 1,88 \text{ mm} \quad X_5 = 75,86 \text{ mm} \]
\[\log X_{2,5} = 1,79 + (0,25 \times 0,118) = 1,82 \text{ mm} \quad X_{2,5} = 66,07 \text{ mm} \]
\[\log X_{1,67} = 1,79 + (-0,25 \times 0,118) = 1,76 \text{ mm} \quad X_{1,67} = 57,54 \text{ mm} \]
\[\log X_{1,25} = 1,79 + (-0,84 \times 0,118) = 1,69 \text{ mm} \quad X_{1,25} = 48,98 \text{ mm} \]

4) Distribusi Probabilitas Log Pearson Tipe III

Nilai K_T dihitung berdasarkan nilai T dan nilai C_s atau C dari tabel kemecengan dengan $C_s = 0,5$ didapat nilai K_T yang diinterpolasikan yaitu:

Untuk $T = 2,5$ dilakukan interpolasi antara $T = 2$ ($K_T = -0,083$) dan $T = 5$ ($K_T = 0,808$).

Jadi $T = 2,5$ didapat $-0,083 + \frac{(0,808 - (-0,083))}{5 - 2} \times (2,5 - 2) = 0,06$

Untuk $T = 1,67$ dilakukan interpolasi antara $T = 0$ ($K_T = 0,0$) dan $T = 2$ ($K_T = -0,083$).

Jadi $T = 1,67$ didapat $0 + \frac{(-0,083) - 0}{2 - 0} \times (1,67 - 0) = -0,7$

Untuk $T = 1,25$ dilakukan interpolasi antara $T = 0$ ($K_T = 0,0$) dan $T = 2$ ($K_T = -0,307$).

Jadi $T = 1,25$ didapat $0 + \frac{(-0,083) - 0}{2 - 0} \times (1,25 - 0) = -0,05$

Untuk $T = 5$ maka didapat $K_T = 0,84$
T = 5 tahun maka $K_T = 0,84$
T = 2,5 tahun maka $K_T = 0,06$
T = 1,67 tahun maka $K_T = -0,07$
T = 1,25 tahun maka $K_T = -0,05$

\[\log \overline{X_i} = 1,79 \text{mm} \]
\[S \log X = 0,118 \text{ mm} \]

Maka interval kelas yaitu:

\[\log X_T = \log \overline{X} + (K_T \times S \log X) \]
\[\log X_5 = 1,79 + (0,84 \times 0,118) = 1,88 \text{ mm} \quad X_5 = 75,86 \text{ mm} \]
\[\log X_{2,5} = 1,79 + (0,06 \times 0,118) = 1,79 \text{ mm} \quad X_{2,5} = 61,66 \text{ mm} \]
\[\log X_{1,67} = 1,79 + (-0,07 \times 0,118) = 1,78 \text{ mm} \quad X_{1,67} = 60,25 \text{ mm} \]
\[\log X_{1,25} = 1,79 + (-0,05 \times 0,118) = 1,78 \text{ mm} \quad X_{1,25} = 60,25 \text{ mm} \]

f. Perhitungan nilai Chi – Kuadrat (X^2)

\[Ef = \frac{\text{Banyak data (n)}}{\text{Jumlah kelas}} = \frac{12}{5} = 2,4 \]

Of = Frekuensi yang diamati pada kelas yang sama

Tabel 4.12 Perhitungan nilai X^2 untuk distribusi Normal

<table>
<thead>
<tr>
<th>Kelas</th>
<th>Interval</th>
<th>Ef</th>
<th>Of</th>
<th>Of– Ef</th>
<th>(\frac{(Of – Ef)^2}{Ef})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>78,61</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td>2</td>
<td>67,81 – 78,61</td>
<td>2,4</td>
<td>1</td>
<td>-1,4</td>
<td>0,82</td>
</tr>
<tr>
<td>3</td>
<td>58,65 – 67,81</td>
<td>2,4</td>
<td>5</td>
<td>2,6</td>
<td>2,82</td>
</tr>
<tr>
<td>4</td>
<td>47,85 – 58,65</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td>5</td>
<td><47,85</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>X^2</td>
<td>4,48</td>
<td></td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)
Tabel 4.13 Perhitungan nilai X^2 untuk distribusi Gumbel

<table>
<thead>
<tr>
<th>Kelas</th>
<th>Interval</th>
<th>Ef</th>
<th>Of</th>
<th>Of – Ef</th>
<th>$\frac{(Of – Ef)^2}{Ef}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>81,78</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td>2</td>
<td>66,36 – 81,78</td>
<td>2,4</td>
<td>1</td>
<td>-1,4</td>
<td>0,82</td>
</tr>
<tr>
<td>3</td>
<td>55,56 – 66,36</td>
<td>2,4</td>
<td>5</td>
<td>2,6</td>
<td>2,82</td>
</tr>
<tr>
<td>4</td>
<td>44,99 – 55,56</td>
<td>2,4</td>
<td>3</td>
<td>0,6</td>
<td>0,15</td>
</tr>
<tr>
<td>5</td>
<td><44,99</td>
<td>2,4</td>
<td>1</td>
<td>-1,4</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>X^2</td>
<td>4,68</td>
</tr>
</tbody>
</table>

Sumber: Perhitungan

Tabel 4.14 Perhitungan nilai X^2 untuk distribusi Log Normal

<table>
<thead>
<tr>
<th>Kelas</th>
<th>Interval</th>
<th>Ef</th>
<th>Of</th>
<th>Of – Ef</th>
<th>$\frac{(Of – Ef)^2}{Ef}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>75,86</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td>2</td>
<td>66,07 – 75,86</td>
<td>2,4</td>
<td>1</td>
<td>-1,4</td>
<td>0,82</td>
</tr>
<tr>
<td>3</td>
<td>57,54 – 66,07</td>
<td>2,4</td>
<td>5</td>
<td>2,6</td>
<td>2,82</td>
</tr>
<tr>
<td>4</td>
<td>48,98 – 57,54</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td>5</td>
<td><48,98</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>X^2</td>
<td>3,85</td>
</tr>
</tbody>
</table>

Sumber: Perhitungan

Tabel 4.15 Perhitungan nilai X^2 untuk distribusi Log Pearson Tipe III

<table>
<thead>
<tr>
<th>Kelas</th>
<th>Interval</th>
<th>Ef</th>
<th>Of</th>
<th>Of – Ef</th>
<th>$\frac{(Of – Ef)^2}{Ef}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>75,86</td>
<td>2,4</td>
<td>2</td>
<td>-0,4</td>
<td>0,07</td>
</tr>
<tr>
<td>2</td>
<td>61,66 – 75,86</td>
<td>2,4</td>
<td>4</td>
<td>1,6</td>
<td>1,07</td>
</tr>
<tr>
<td>3</td>
<td>60,25 – 61,66</td>
<td>2,4</td>
<td>1</td>
<td>-1,4</td>
<td>0,82</td>
</tr>
<tr>
<td>4</td>
<td>60,25 – 60,25</td>
<td>2,4</td>
<td>0</td>
<td>-2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>5</td>
<td><60,25</td>
<td>2,4</td>
<td>5</td>
<td>2,6</td>
<td>2,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>X^2</td>
<td>7,18</td>
</tr>
</tbody>
</table>

Sumber: Perhitungan
Tabel 4.16 Rekapitulasi nilai X^2 dan $X^2 cr$

<table>
<thead>
<tr>
<th>No.</th>
<th>Distribusi Probabilitas</th>
<th>X^2 hitung</th>
<th>$X^2 cr$</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>4,48</td>
<td>5,991</td>
<td>Diterima</td>
</tr>
<tr>
<td>2</td>
<td>Gumbel</td>
<td>4,68</td>
<td>5,991</td>
<td>Diterima</td>
</tr>
<tr>
<td>3</td>
<td>Log Normal</td>
<td>3,85</td>
<td>5,991</td>
<td>Diterima</td>
</tr>
<tr>
<td>4</td>
<td>Log Pearson Tipe III</td>
<td>7,18</td>
<td>5,991</td>
<td>Ditolak</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

Berdasarkan Tabel 4.16 maka distribusi yang dipilih adalah distribusi Log Normal karena nilai X^2 hitung (paling kecil) $< X^2 cr = 3,85 < 5,991$, hujan rencana untuk periode ulang 2, 5, 10, 25, 50 dan 100 tahun sebagai berikut :

Tabel 4.17 Hujan rencana dengan distribusi Log Normal

<table>
<thead>
<tr>
<th>No.</th>
<th>Hujan rencana (mm)</th>
<th>Periode ulang (tahun)</th>
<th>Peluang (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61,66</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>77,62</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>87,09</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>95,49</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>109,65</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>114,82</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

4.2.2 Metode Smirnov-Kolmogoroff

Pengujian distribusi probabilitas dengan metode Smirnov-Kolmogoroff dilakukan dengan langkah-langkah perhitungan sebagai berikut :

a. Distribusi Probabilitas Normal

1) Mengurutkan data dari yang terbesar ke yang terkecil
2) Menghitung probabilitas $P(X_i)$ dengan rumus :

$$P(X_i) = \frac{m}{n+1}$$

$$P(X_i) = \frac{1}{12+1} = 0,077$$
3) Menghitung nilai \(f(t) \)
\[
f(t) = \frac{X - \bar{X}}{S} = \frac{98.75 - 63.23}{18.31} = 1.94
\]
4) Dari hasil \(f(t) \) lihat tabel luas wilayah dibawah kurva normal dengan \(t = 1.94 \) maka didapat luas = 0.9738
5) Menghitung \(P'(X_i) = 1 - \text{point 4} \)
\[
= 1 - 0.9738 = 0.0262
\]
6) Menghitung \((\Delta P) = P'(x) - P_x \)
\[
\Delta P_1 = 0.0262 - 0.077 = -0.051
\]
7) Perhitungan selanjutnya ditabelkan pada Tabel 4.18
8) Dari tabel perhitungan didapat \(\Delta P \text{ max} = 0.194 \)
9) Membandingkan \(\Delta P \text{ max} \) dengan nilai kritis \(\Delta P \text{ kritis}. \) Untuk \(N = 12 \) dan \(\alpha = 5\% \) dari tabel \(\Delta P \text{ kritis} \) Smirnov-Kolmogorof didapat nilai\(\Delta P \text{ kritis} = 0.392 \)
10) Jadi \(\Delta P \text{ max} (0.194) < \Delta P \text{ kritis} (0.392) \)
 Maka distribusi probabilitas Normal dapat diterima untuk menganalisis data curah hujan.

<table>
<thead>
<tr>
<th>No.</th>
<th>(X_i) (mm)</th>
<th>(P(X_i))</th>
<th>(F(t))</th>
<th>Luas Kurva Normal</th>
<th>(P'(X_i))</th>
<th>(\Delta P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.75</td>
<td>0.077</td>
<td>1.94</td>
<td>0.9738</td>
<td>0.0262</td>
<td>-0.051</td>
</tr>
<tr>
<td>2</td>
<td>97.25</td>
<td>0.154</td>
<td>1.86</td>
<td>0.9686</td>
<td>0.0314</td>
<td>-0.122</td>
</tr>
<tr>
<td>3</td>
<td>66.63</td>
<td>0.231</td>
<td>0.19</td>
<td>0.5753</td>
<td>0.4247</td>
<td>0.194</td>
</tr>
<tr>
<td>4</td>
<td>64.51</td>
<td>0.308</td>
<td>0.07</td>
<td>0.5279</td>
<td>0.4721</td>
<td>0.164</td>
</tr>
<tr>
<td>5</td>
<td>63.21</td>
<td>0.385</td>
<td>0.00</td>
<td>0.5</td>
<td>0.5</td>
<td>0.115</td>
</tr>
<tr>
<td>6</td>
<td>62.93</td>
<td>0.462</td>
<td>-0.02</td>
<td>0.492</td>
<td>0.508</td>
<td>0.046</td>
</tr>
<tr>
<td>7</td>
<td>61.43</td>
<td>0.538</td>
<td>-0.10</td>
<td>0.4602</td>
<td>0.5398</td>
<td>0.001</td>
</tr>
<tr>
<td>8</td>
<td>60.04</td>
<td>0.615</td>
<td>-0.17</td>
<td>0.4325</td>
<td>0.5675</td>
<td>-0.048</td>
</tr>
<tr>
<td>9</td>
<td>49.07</td>
<td>0.692</td>
<td>-0.77</td>
<td>0.2206</td>
<td>0.7794</td>
<td>0.087</td>
</tr>
<tr>
<td>10</td>
<td>48.92</td>
<td>0.769</td>
<td>-0.78</td>
<td>0.2177</td>
<td>0.7823</td>
<td>0.013</td>
</tr>
<tr>
<td>11</td>
<td>46.05</td>
<td>0.846</td>
<td>-0.94</td>
<td>0.1736</td>
<td>0.8264</td>
<td>-0.020</td>
</tr>
<tr>
<td>12</td>
<td>39.93</td>
<td>0.923</td>
<td>-1.27</td>
<td>0.102</td>
<td>0.898</td>
<td>-0.025</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)
b. Distribusi Probabilitas Gumbel

1) Mengurutkan data dari yang terbesar sampai yang terkecil

2) Menghitung probabilitas P(Xi) dengan rumus:

\[P(X_i) = \frac{m}{n+1} \]

\[P(X_i) = \frac{1}{12+1} = 0,077 \]

3) Menghitung nilai f(t)

\[f (t) = \frac{X - \bar{X}}{S} \]

\[= \frac{98,75 - 63,23}{18,31} = 1,94 \]

4) Dari Tabel dengan nilai N=12 maka didapat Nilai (Sn) = 0,9833 dan Nilai Reduced Mean (Yn) = 0,5035

5) Yt diperoleh dari dari persamaan yaitu:

\[f_t = \frac{Y_t - Y_n}{S_n} \]

\[= \frac{1,94 - 0,5035}{0,9833} \text{ maka } Y_t = (1,94 \times 0,9833) + 0,5035 = 2,4109 \]

T diperoleh dari nilai Yt hasil perhitungan point 5 dengan Yt = 2,4109 terletak antara periode ulang 10 tahun Yt = 2,2504 dan 20 tahun Yt = 2,9702.

Maka, Yt =2,489 di interpolasikan yaitu = 10+ \(\frac{2,4109 - 2,2504}{2,9702 - 2,2504} \) x (20-10)=12,2 th

6) Menghitung \(P'(X_i) = \frac{1}{T} \)

7) Menghitung (\(\Delta P \)) = \(P'(X_i) - P(X_i) \)

8) Berdasarkan Tabel 4.19 dapat dilihat bahwa \(\Delta P \) max = 4.15

9) Jika jumlah data 12 dan \(\alpha \) (derajat kepercayaan) = 5 % maka dari Tabel nilai \(\Delta P \) kritis Smirnov Kolmogorof didapat \(\Delta P = 0,392 \)

10) Jadi \(\Delta P \) maksimum (4.15) >\(\Delta P \) kritis (0,392)

Maka distribusi probabilitas Gumbel **ditolak** untuk menganalisis data curah hujan.
<table>
<thead>
<tr>
<th>No.</th>
<th>Xi (mm)</th>
<th>P (Xi)</th>
<th>f (t)</th>
<th>Yt</th>
<th>T</th>
<th>P'(Xi)</th>
<th>ΔP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.75</td>
<td>0.077</td>
<td>1.94</td>
<td>2.4109</td>
<td>12.2</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>97.25</td>
<td>0.154</td>
<td>1.86</td>
<td>2.3304</td>
<td>11.1</td>
<td>0.09</td>
<td>-0.064</td>
</tr>
<tr>
<td>3</td>
<td>66.63</td>
<td>0.231</td>
<td>0.19</td>
<td>0.6863</td>
<td>5.9</td>
<td>0.17</td>
<td>-0.061</td>
</tr>
<tr>
<td>4</td>
<td>64.51</td>
<td>0.308</td>
<td>0.07</td>
<td>0.5724</td>
<td>5.6</td>
<td>0.18</td>
<td>-0.13</td>
</tr>
<tr>
<td>5</td>
<td>63.21</td>
<td>0.385</td>
<td>0.00</td>
<td>0.5026</td>
<td>5.5</td>
<td>0.18</td>
<td>-0.21</td>
</tr>
<tr>
<td>6</td>
<td>62.93</td>
<td>0.462</td>
<td>-0.02</td>
<td>0.4876</td>
<td>5.4</td>
<td>0.19</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>61.43</td>
<td>0.538</td>
<td>-0.10</td>
<td>0.4071</td>
<td>5.2</td>
<td>0.19</td>
<td>0.35</td>
</tr>
<tr>
<td>8</td>
<td>60.04</td>
<td>0.615</td>
<td>-0.17</td>
<td>0.3324</td>
<td>5.01</td>
<td>0.2</td>
<td>-0.42</td>
</tr>
<tr>
<td>9</td>
<td>49.07</td>
<td>0.692</td>
<td>-0.77</td>
<td>-0.2566</td>
<td>0.6</td>
<td>1.7</td>
<td>1.01</td>
</tr>
<tr>
<td>10</td>
<td>48.92</td>
<td>0.769</td>
<td>-0.78</td>
<td>-0.2647</td>
<td>0.5</td>
<td>2</td>
<td>1.23</td>
</tr>
<tr>
<td>11</td>
<td>46.05</td>
<td>0.846</td>
<td>-0.94</td>
<td>-0.4188</td>
<td>0.2</td>
<td>5</td>
<td>4.15</td>
</tr>
<tr>
<td>12</td>
<td>39.93</td>
<td>0.923</td>
<td>-1.27</td>
<td>-0.7474</td>
<td>-0.6</td>
<td>-1.6</td>
<td>-2.52</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

1. **Mengurutkan data dari yang terbesar ke yang terkecil**
2. **Menghitung probabilitas P(Xi) dengan rumus**:
 \[P(Xi) = \frac{m}{n+1} \]
 \[P(Xi) = \frac{1}{12+1} = 0.077 \]
3. **Menghitung nilai f (t)**
 \[f(t) = \frac{\log_{e}Xi - \log_{e}Xi_{\bar{}}} {S \log_{e}Xi} \]
 \[= \frac{1.99 - 1.79}{0.118} = 1.69 \]
4. **Dari hasil f (t) lihat tabel luas wilayah dibawah kurva normal dengan t = 1.86 maka didapat luas = 0.9545**
5. **Menghitung P'(Xi) = 1 – point 4**
 \[= 1 - 0.9545 = 0.05 \]
6) Menghitung \(\Delta P\) = \(P'(Xi) - P(Xi)\)
\[\Delta P_1 = 0,03 - 0,077 = -0,03\]
7) Perhitungan selanjutnya ditabelkan pada Tabel 3.20
8) Dari tabel perhitungan didapat \(\Delta P_{max} = 0,17\)
9) Membandingkan \(\Delta P_{max}\) dengan nilai kritis \(\Delta P_{kritis}\). Untuk \(N = 12\) dan \(\alpha = 5\%\) dari tabel \(\Delta P_{kritis}\) Smirnov-Kolmogorof didapat nilai \(\Delta P_{kritis} = 0,392\)
10) Jadi \(\Delta P_{max} (0,17) < \Delta P_{kritis} (0,392)\)

Maka distribusi probabilitas Log Normal dapat diterima untuk menganalisis data curah hujan

Tabel 4.20 Perhitungan distribusi Log Normal metode Smirnov-Kolmogorof

<table>
<thead>
<tr>
<th>No.</th>
<th>Xi (mm)</th>
<th>Log (Xi)</th>
<th>P (Xi)</th>
<th>f (t)</th>
<th>Luas Kurva Normal</th>
<th>P'(Xi)</th>
<th>(\Delta P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.75</td>
<td>1.99</td>
<td>0.077</td>
<td>1.69</td>
<td>0.9545</td>
<td>0.05</td>
<td>-0.03</td>
</tr>
<tr>
<td>2</td>
<td>97.25</td>
<td>1.99</td>
<td>0.154</td>
<td>1.69</td>
<td>0.9545</td>
<td>0.05</td>
<td>-0.11</td>
</tr>
<tr>
<td>3</td>
<td>66.63</td>
<td>1.82</td>
<td>0.231</td>
<td>0.25</td>
<td>0.5987</td>
<td>0.40</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>64.51</td>
<td>1.81</td>
<td>0.308</td>
<td>0.17</td>
<td>0.879</td>
<td>0.12</td>
<td>-0.19</td>
</tr>
<tr>
<td>5</td>
<td>63.21</td>
<td>1.80</td>
<td>0.385</td>
<td>0.09</td>
<td>0.5359</td>
<td>0.46</td>
<td>0.08</td>
</tr>
<tr>
<td>6</td>
<td>62.93</td>
<td>1.80</td>
<td>0.462</td>
<td>0.08</td>
<td>0.5319</td>
<td>0.47</td>
<td>0.01</td>
</tr>
<tr>
<td>7</td>
<td>61.43</td>
<td>1.79</td>
<td>0.538</td>
<td>-0.01</td>
<td>0.504</td>
<td>0.50</td>
<td>-0.04</td>
</tr>
<tr>
<td>8</td>
<td>60.04</td>
<td>1.78</td>
<td>0.615</td>
<td>-0.10</td>
<td>0.4602</td>
<td>0.54</td>
<td>-0.08</td>
</tr>
<tr>
<td>9</td>
<td>49.07</td>
<td>1.69</td>
<td>0.692</td>
<td>-0.84</td>
<td>0.2005</td>
<td>0.80</td>
<td>0.11</td>
</tr>
<tr>
<td>10</td>
<td>48.92</td>
<td>1.69</td>
<td>0.769</td>
<td>-0.85</td>
<td>0.1977</td>
<td>0.80</td>
<td>0.03</td>
</tr>
<tr>
<td>11</td>
<td>46.05</td>
<td>1.66</td>
<td>0.846</td>
<td>-1.07</td>
<td>0.1423</td>
<td>0.86</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>39.93</td>
<td>1.60</td>
<td>0.923</td>
<td>-1.60</td>
<td>0.0548</td>
<td>0.95</td>
<td>0.02</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

d. Distribusi Probabilitas Log Pearson Tipe III
1) Mengurutkan data dari yang terbesar ke yang terkecil
2) Menghitung probabilitas \(P(Xi)\) dengan rumus:
\[P(Xi) = \frac{m}{n+1}\]
\[P(Xi) = \frac{1}{12+1} = 0,077\]
3) Menghitung nilai \(f(t)\)
\[f(t) = \frac{\text{Log} Xi - \text{Log} Xi}{S \text{Log} Xi}\]
\[
\frac{1,99 - 1,79}{0,118} = 1,69
\]

4) Nilai P’Xi berdasarkan ft = 1,86 dengan menggunakan tabel 2.6 kemecengan Log Pearson tipe III Cs = 0,5 dengan interpolasi diperoleh P’(Xi). ft = 1,69 terletak antara periode ulang 10 tahun = 1,323 dan periode ulang 25 tahun = 1,910 dibuat dalam persen.

\[
P’(Xi) = 10 + \frac{(1,69 – 1,323)}{(1,910 – 1,323)} \times (25 -10) = 19,38
\]

Dalam persen = 19,38/100 = 0,19

5) \(\Delta P = P'(Xi) - P(Xi) \)

= 0,19 – 0,077 = 0,11

6) Perhitungan selanjutnya ditabelkan pada Tabel 3.21

7) Berdasarkan Tabel 3.21 dapat dilihat bahwa \(\Delta P \) max = 0,41

8) Jika jumlah data (n) = 12 dan \(\alpha = 5 % \) maka dari tabel nilai \(\Delta P \) kritis Smirnov- Kolmogorof didapat \(\Delta P = 0,392 \)

9) Jadi \(\Delta P \) maksimum (0,41) <\(\Delta P \) kritis (0,392)

Maka, distribusi probabilitas Log Pearson Tipe III dapat ditolak untuk menganalisis data curah hujan.

Tabel 4.21: Distribusi Log Pearson Tipe III metode Smirnov-Kolmogorof

<table>
<thead>
<tr>
<th>No.</th>
<th>Xi (mm)</th>
<th>Log (Xi)</th>
<th>P (Xi)</th>
<th>f (t)</th>
<th>P’(Xi)</th>
<th>(\Delta P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.75</td>
<td>1.99</td>
<td>0,077</td>
<td>1,69</td>
<td>0,19</td>
<td>0,41</td>
</tr>
<tr>
<td>2</td>
<td>97.25</td>
<td>1.99</td>
<td>0,154</td>
<td>1,69</td>
<td>0,19</td>
<td>0,4</td>
</tr>
<tr>
<td>3</td>
<td>66.63</td>
<td>1.82</td>
<td>0,231</td>
<td>0,25</td>
<td>0,03</td>
<td>-0,2</td>
</tr>
<tr>
<td>4</td>
<td>64.51</td>
<td>1.81</td>
<td>0,308</td>
<td>0,17</td>
<td>0,03</td>
<td>-0,28</td>
</tr>
<tr>
<td>5</td>
<td>63.21</td>
<td>1.80</td>
<td>0,385</td>
<td>0,09</td>
<td>0,02</td>
<td>-0,36</td>
</tr>
<tr>
<td>6</td>
<td>62.93</td>
<td>1.80</td>
<td>0,462</td>
<td>0,08</td>
<td>0,02</td>
<td>-0,44</td>
</tr>
<tr>
<td>7</td>
<td>61.43</td>
<td>1.79</td>
<td>0,538</td>
<td>-0,01</td>
<td>0,02</td>
<td>-0,52</td>
</tr>
<tr>
<td>8</td>
<td>60.04</td>
<td>1.78</td>
<td>0,615</td>
<td>-0,10</td>
<td>0,01</td>
<td>-0,60</td>
</tr>
<tr>
<td>9</td>
<td>49.07</td>
<td>1.69</td>
<td>0,692</td>
<td>-0,84</td>
<td>-0,005</td>
<td>-0,69</td>
</tr>
<tr>
<td>10</td>
<td>48.92</td>
<td>1.69</td>
<td>0,769</td>
<td>-0,85</td>
<td>-0,006</td>
<td>-0,77</td>
</tr>
<tr>
<td>11</td>
<td>46.05</td>
<td>1.66</td>
<td>0,846</td>
<td>-1,07</td>
<td>-0,01</td>
<td>-0,86</td>
</tr>
<tr>
<td>12</td>
<td>39.93</td>
<td>1.60</td>
<td>0,923</td>
<td>-1,60</td>
<td>-0,03</td>
<td>-0,89</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)
Berdasarkan Tabel 3.22 maka distribusi yang dipilih adalah distribusi Log Pearson Tipe III karena nilai ΔP_{hitung} (paling kecil) $< \Delta P_{kritis} = 0,17 < 0,382$, hujan rencana untuk periode ulang 2, 5, 10, 25, 50 dan 100 tahun sebagai berikut:

<table>
<thead>
<tr>
<th>No.</th>
<th>Distribusi Probabilitas</th>
<th>ΔP_{hitung}</th>
<th>ΔP_{kritis}</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>0,194</td>
<td>0,392</td>
<td>Diterima</td>
</tr>
<tr>
<td>2</td>
<td>Gumbel</td>
<td>4.15</td>
<td>0,392</td>
<td>Ditolak</td>
</tr>
<tr>
<td>3</td>
<td>Log Normal</td>
<td>0,17</td>
<td>0,392</td>
<td>Diterima</td>
</tr>
<tr>
<td>4</td>
<td>Log Pearson Tipe III</td>
<td>0,41</td>
<td>0,392</td>
<td>Ditolak</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

4.3 Analisis Debit Banjir Rencana

Analisis debit banjir rencana dihitung berdasarkan data hujan rencana yang dilakukan dengan melihat hubungan banjir yang akan terjadi dengan distribusi curah hujan rencana periode ulang 2, 5, 10, 25, 50, dan 100 tahun. Perhitungan debit banjir rencana Batang Lembang ini adalah dengan metode Empiris Melchior, Mononobe dan Hapers.
4.3.1 Metode Melchior

Data-data untuk perhitungan debit banjir dengan metode Melchioryang
didapat dari peta Topografi yaitu:

- Luas Catchment area (A) = 101 km²
- Panjang sungai efektif (L') = 0,9 x 23 km = 20,7 km
- Elevasi hulu sungai = + 1989 mdpl
- Elevasi hilir sungai yang di tinjau = + 427.00 mdpl

Beda tinggi elevasi sungai tertinggi dengan

- Beda Elevasi (ΔH) = 1562 m

Langkah–langkah perhitungan metode Melchior yaitu :

a. Menentukan nilai pengaliran (α)
 Pada umumnya nilai pengaliran (α) = 0,42 – 0,62, maka diambil α = 0,62

b. Menentukan β dan kemiringan (S)
 Luas Elips Melchior (F) = \frac{1}{4} \pi a b
 = 0,25 x 3,14 x 18 x 12 = 169,56 km²

Dimana; a = L catchment area pada peta topography didapat 36 cm
 a = \frac{36 \times 50000}{100000} = 18 km
 b = 2/3 x a = 2/3 x 18 = 12 km

= 0,6 \leq fn/f \leq 0,9

= 101 / 169,56 = 0,59

Menghitung kemiringanrata-rata sungai (S) :

\[S = \frac{\Delta H}{L} = \frac{1562}{20700} = 0,075 \text{ m} \]

Dengan nilai (F) = 169,56 km², maka \(\beta_1\) dihitung dengan rumus :

\[F = \frac{1970}{\beta_1 - 0,12} - 3960 + (1720 \times \beta_1) \]

\[169,56 = \frac{1970}{\beta_1 - 0,12} - 3960 + (1720 \times \beta_1) \]

Diperoleh nilai \(\beta_1 = 0,8664\)
c. Coba-coba asumsikan nilai I₁, berdasarkan tabel 2.12 Perkiraan intensitas hujan harian Melchior dengan nilai F = 169.56 km², maka dengan cara interpolasi dari tabel Melchior diperoleh nilai,

\[I_1 = 4.75 + \frac{4.00 - 4.75}{216 - 144} \times (169.56 - 144) = 4.48 \text{ m}^3/\text{dt/km} \]

d. Menghitung debit (Q)

\[Q = \beta_1 \times I_1 \times A \]

\[= 0.8664 \times 4.48 \times 101 = 392.03 \text{ m}^3/\text{dt} \]

e. Menghitung kecepatan (V)

\[V = 1.31 \times (Q \times S^2)^{0.2} \]

\[= 1.31 \times (392.03 \times 0.075^2)^{0.2} = 1.53 \text{ m/dt} \]

f. Menghitung nilai t_c

\[t_c = \frac{10 \times L}{36 \times V} = \frac{10 \times 20.7}{36 \times 1.53} \]

\[= 3.75 \text{ jam} = 225 \text{ menit} \]

g. Menghitung nilai β_2

Berdasarkan nilai F = 169.56 km², dan nilai t_c = 3.75 jam, maka lihat tabel 2.11 Persentase β_2 menurut Melchior sehingga diperoleh β_2 = 53.5 %.

h. Menghitung nilai β

Sebelumnya diketahui β_1 = 0.8664 maka didapat nilai,

\[\beta = \beta_1 \times \beta_2 \]

\[= 0.8664 \times 0.53 = 0.46 \]

i. Menghitung I sebenarnya (I_2)

\[I = \frac{10 \times \beta \times R_{24 \text{ maksimum}}}{36 \times t_c} \]

\[= \frac{10 \times 0.46 \times 200}{36 \times 3.75} = 2.7 \text{ m}^3/\text{dt/km}^2 \]

j. Bandingkan I coba-coba = 4.48 dan I hitung = 6.8 m³/dt/km²

Jadi, I₁ ≠ I₂

k. Coba lagi I₁ = 6.9 m³/dt/km² kemudian perhitungan dimulai dari (point d) yaitu :

- Menghitung debit (Q)

\[Q = \beta_1 \times I_1 \times A \]

\[= 0.8664 \times 6.8 \times 101 = 595.04 \text{ m}^3/\text{dt} \]
Menghitung kecepatan (V)

\[V = 1.31 \times (Q \times S^{0.2}) \]

\[= 1.31 \times (595.04 \times 0.075^{0.2}) \]

\[= 1.67 \text{m/dt} \]

Menghitung nilai \(t_c \)

\[t_c = \frac{10 \times L}{36 \times V} = \frac{10 \times 20.7}{36 \times 1.67} \]

\[= 3.44 \text{jam} = 206.4 \text{menit} \]

Menghitung nilai \(\beta_2 \)

Berdasarkan nilai \(F = 169.56 \text{km}^2 \), dan nilai \(t_c = 3.44 \text{jam} \), maka lihat tabel 2.9 Persentase \(\beta_2 \) menurut Melchior sehingga diperoleh \(\beta_2 = 49.16\% \).

Menghitung nilai \(\beta \)

Sebelumnya diketahui \(\beta_1 = 0.8664 \) maka didapat nilai,

\[\beta = 0.8664 \times 0.49 = 0.42 \]

Menghitung I sebenarnya (\(I_2 \))

\[I = \frac{10 \times \beta \times R_{24} \text{maksimum}}{36 \times t_c} \]

\[= \frac{10 \times 0.42 \times 200}{36 \times 3.44} = 6.8 \text{m}^3/\text{dt/km}^2 \]

Bandangkan \(I \) coba-coba = 6.8 dan \(I \) hitung = 6.8 \text{m}^3/\text{dt/km}^2

Jadi, setelah dilakukan perhitungan didapat \(I = 6.8 \text{m}^3/\text{dt/km}^2 \).

Untuk \(t_c = 206.4 \text{menit} \), besarnya koreksi 5\% (lihat tabel 2.13 Penambahan presentase Melchior), maka :

\[I = 6.8 + (6.8 \times 0.05) = 7.14 \text{m}^3/\text{dt/km}^2 \]

1. Menghitung debit banjir rencana (Q)

\[Q = \alpha \times I \times A \times \frac{R_T}{200} \]

Debit banjir rencana (\(Q_2 \)) = \(\alpha \times I \times A \times \frac{R_2}{200} \)

\[= 0.62 \times 7.14 \times 101 \times \frac{61.66}{200} \]

\[= 137.84 \text{m}^3/\text{dt} \]
Perhitungan selanjutnya ditabelkan.

Tabel 4.24 Perhitungan debit banjir metode Melchior

<table>
<thead>
<tr>
<th>No.</th>
<th>T</th>
<th>R_T (mm)</th>
<th>A (km2)</th>
<th>I (m3/dt.km2)</th>
<th>Q (m3/dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>61,66</td>
<td>101</td>
<td>7.14</td>
<td>137.87</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>77,62</td>
<td>101</td>
<td>7.14</td>
<td>173.52</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>87,09</td>
<td>101</td>
<td>7.14</td>
<td>194.69</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>95,49</td>
<td>101</td>
<td>7.14</td>
<td>221.24</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>109,65</td>
<td>101</td>
<td>7.14</td>
<td>254.05</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>114,82</td>
<td>101</td>
<td>7.14</td>
<td>266.03</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)

4.3.2 Metode Mononobe

Analisis debit banjir rencana dengan metode sintetis empiris Mononobe dihitung dengan bentuk persamaan sebagai berikut:

$$Q_T = \alpha \cdot I_T \cdot A^{\frac{1}{3.6}}$$

Dimana:

- Q_T = Debit banjir rencana dengan periode ulang tertentu (m3/dt)
- α = Koefisien pengaliran (tabel Mononobe)
- I_T = Intensitas hujan periode ulang tertentu (mm/jam)
- A = Luas daerah pengaliran (km2)

Data-data untuk perhitungan debit banjir dengan metode Mononobeyang didapat dari peta Topografi yaitu:

- Luas Catchment area (A) = 101 km2
- Panjang sungai efektif (L') = 0,9 x 23 = 20,7 km
- Elevation hulu sungai = + 1989 mdpl
- Elevation hilir yang di tinjau = + 427.00 mdpl
- Beda tinggi elevation sungai tertinggi dengan
- Beda Elevation (ΔH) = 1562 m
- Koefisien pengaliran (α) = 0,70 (Pegunungan tersier) pada tabel 2.14
Langkah–langkah perhitungan metode Mononobe yaitu:

a. Menghitung kemiringan rata-ratasungai (S)

\[S = \frac{\Delta H}{L} = \frac{1562}{20700} = 0,075 \]

b. Menghitung kecepatan aliran (V)

\[V = 72 \times (S)^{0,6} = 72 \times (0,075)^{0,6} = 15.22 \text{ km/jam} \]

c. Menghitung waktu konsentrasi (t)

\[t = \frac{L}{V} = \frac{20,7 \text{ km}}{15.22 \text{ km/jam}} = 1.36 \text{ jam} \]

d. Menghitung intensitas hujan periode ulang 2 tahun

\[R_2 = 61,66 \text{ mm} \]

\[I_2 = \frac{R_2}{24} \left(\frac{24}{t} \right)^{2/3} = \frac{61,66}{24} \left(\frac{24}{1.36} \right)^{2/3} = 17.41 \text{ mm/jam} \]

e. Menghitung debit banjir rencana (Q_2)

\[Q_2 = \frac{\alpha \cdot I_2 \cdot A}{3,6} = \frac{0,70 \times 17.41 \times 101}{3,6} = 341.91 \text{ m}^3/\text{d} \]

Perhitungan selanjutnya ditabelkan.

<table>
<thead>
<tr>
<th>No.</th>
<th>T</th>
<th>R_T (mm)</th>
<th>A (km²)</th>
<th>I (mm/jam)</th>
<th>Q (m³/dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>61,66</td>
<td>101</td>
<td>17.41</td>
<td>341.91</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>77,62</td>
<td>101</td>
<td>21.92</td>
<td>430.58</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>87,09</td>
<td>101</td>
<td>24.59</td>
<td>482.92</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>95,49</td>
<td>101</td>
<td>26.97</td>
<td>529.66</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>109,65</td>
<td>101</td>
<td>30.97</td>
<td>608.22</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>114,82</td>
<td>101</td>
<td>32.43</td>
<td>636.89</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)
4.3.3 Metode Haspers

Analisis debit banjir rencana dengan metode sintetis empiris Haspers dihitung dengan bentuk persamaan sebagai berikut:

\[Q_T = \alpha \cdot \beta \cdot q \cdot A \]

Dimana :

\(Q_T \) = Debit banjir rencana \((m^3/dt)\)
\(\alpha \) = Koefesien pengaliran (tabel Mononobe)
\(q \) = Intensitas hujan yang diperhitungkan \((m^3/dt/km^2)\)
\(A \) = Luas daerah pengaliran \((km^2)\)
\(\beta \) = Koefesien reduksi

Langkah-langkah perhitungan metode Haspers yaitu :

a. Menghitung kemiringan Catchment area \((S)\)

\[S = \frac{1562}{20700} = 0.075 \]

b. Menghitung koefesien Run Off

\[\alpha = \frac{1+0.012(A)^{0.7}}{1+0.075(A)^{0.7}} \]

\[= \frac{1+0.012(101)^{0.7}}{1+0.075(101)^{0.7}} = 0.45 \]

c. Menghitung waktu kosentrasi

\[t_c = 0.1 \times 20.7^{0.8} \times (S)^{0.3} \]

\[= 0.1 \times (20.7)^{0.8} \times (0.075)^{0.3} = 2.46 \text{ jam} \]

d. Menghitung curah hujan untuk lama hujan tertentu \((t = t_c)\)

Untuk \(2 \text{ jam} < t < 19 \text{ jam}\), maka :

\[r = \frac{t \cdot R_{24}}{t+1} \]

\[= \frac{2.46 \times R_{24}}{2.46+1} = 0.71 \ R_{24} \]

e. Koefesien reduksi

\[\frac{1}{\beta} = 1 + \frac{1+3.7 \times 10^{(-0.4 \times t)}}{t^2+15} \times \frac{A^{0.75}}{12} \]

\[= 1 + \frac{1+3.7 \times 10^{(-0.4 \times 2.46)}}{2.46^2+15} \times \frac{101^{0.75}}{12} = 1.17 \]
\[\beta = \frac{1}{1,17} = 0,85 \]

f. Menghitung intensitas hujan periode ulang

\[q_n = \frac{r}{3,6 \cdot t} \]

\[= \frac{r}{3,6 \times 2.46} = \frac{r}{8,86} \]

g. Menghitung debit banjir rencana (\(Q_T \))

\[Q = \alpha \cdot \beta \cdot q_n \cdot A \]

\[= 0,45 \times 0,85 \times \frac{r}{8,86} \times 101 \]

\[= (4.36) r \]

\[Q_T = 4.36 \times 0,88 \cdot R_{24} \]

Menghitung debit banjir periode ulang 2 tahun yaitu :

\[Q_2 = 4.36 \times r \cdot R_{24} \]

\[= 4.36 \times 0,71 \times 61,66 \]

\[= 190.87 \text{ m}^3/\text{dt} \]

Perhitungan selanjutnya ditabelkan.

<table>
<thead>
<tr>
<th>No.</th>
<th>T</th>
<th>(R_T) (mm)</th>
<th>A (km(^2))</th>
<th>(Q) (m(^3)/dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>61,66</td>
<td>101</td>
<td>190.87</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>77,62</td>
<td>101</td>
<td>240.28</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>87,09</td>
<td>101</td>
<td>269.59</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>95,49</td>
<td>101</td>
<td>295.59</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>109,45</td>
<td>101</td>
<td>339.43</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>114,82</td>
<td>101</td>
<td>355.44</td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)
4.3.4 Menghitung Debit Banjir Yang Terjadi Dilapangan

Untuk memilih debit banjir rencana digunakan metode pengamatan sebagai control terhadap hasil perhitungan debit banjir rencana yangdiperolehdari data hujan (KP – 01 halaman 151). Langkah-langkah perhitungannya adalah dengan menanyakan kepada penduduk setempat atau dari tanda-tanda yang ada dapat memberikan informasi mengenai tinggi banjir (h) yang sering terjadi. Konversi keterangan tentang tinggi banjir menjadi data debit banjir dihitung dengan rumushidrolik sebagai berikut:

Menghitung debit banjir dilapangan akibat curah hujan yaitu:

- Tinggi air (h) = 2 m
- Talud (m) = 1 : 1
- Lebar (b) = 25 m
- Kemiringan(I) = 0,0058
- Koef. Manning (n) = 0,03

Gambar 4.2: Potongan melintang penampang sungai
Langkah–langkah perhitungan debit banjir lapangan:

Luas (A) \(= b \cdot h\)
\[= 25 \times 2\]
\[= 50 \text{ m}^2\]

Keliling (P) = b + 2h
\[= 25 + 2 \times 2\]
\[= 29 \text{ m}\]

Jari – jari (R) = \(\frac{A}{P}\)
\[= \frac{50}{29} = 1.72 \text{ m}\]

\(R^{2/3} = 1.43 \text{ m}\)

\[Q = A \times V\]
\[= 50 \times \frac{1}{n} \times R^{2/3} \times I^{1/2}\]
\[= 50 \times \frac{1}{0.03} \times 1.43 \times (0.0058)^{1/2}\]
\[= 181.51 \text{ m}^3/\text{dt} \approx 194.69 \text{ m}^3/\text{dt}\] (metode Melchior Q_{10}), sehingga debit banjir mendekati debit rencana Melchior.

maka dipakai debit banjir rencana Melchior Q50 untuk jagaan supaya lebih aman. Selanjutnya dibuat grafik perbandingan debit banjir dengan ketiga metode yang terlampirkan dibawah ini.

<table>
<thead>
<tr>
<th>Metode</th>
<th>Q2</th>
<th>Q5</th>
<th>Q10</th>
<th>Q25</th>
<th>Q50</th>
<th>Q100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melchior</td>
<td>137.87</td>
<td>173.52</td>
<td>194.69</td>
<td>221.24</td>
<td>254.05</td>
<td>266.03</td>
</tr>
<tr>
<td>Mononobe</td>
<td>341.91</td>
<td>430.58</td>
<td>482.92</td>
<td>529.66</td>
<td>608.22</td>
<td>636.89</td>
</tr>
<tr>
<td>Haspers</td>
<td>190.87</td>
<td>240.28</td>
<td>269.59</td>
<td>295.59</td>
<td>339.43</td>
<td>355.44</td>
</tr>
</tbody>
</table>

Gambar 4.3 Grafik perhitungan debit banjir rencana
Berdasarkan perhitungan debit banjir lapangan diatas, maka metode debit banjir rencana yang cocok adalah metoda melchior karena debit banjir lapangan mendekati Q₅₀ pada metode melchior.

4.4 Perhitungan Dimensi Penampang Batang Lembang

Dimensi penampang saluran untuk daerah hilir Batang Lembang direncanakan dengan menggunakan saluran Trapesiummajemuk. Direncanakan dengan trapesiumadalah atas dasar dari kondisi sungai yang terdiri dari krikil dan pasir yang memudahkan terjadinya erosi.

Tabel 4.28 Kriteria pemilihan kala ulang banjir

<table>
<thead>
<tr>
<th>NO</th>
<th>JENIS BANGUNAN AIR</th>
<th>KALA ULANG BANJIR T (TAHUN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bendungan Urugan Tanah/Batu</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>Bendungan Beton/Batu Kali</td>
<td>500-1000</td>
</tr>
<tr>
<td>3</td>
<td>Bendung</td>
<td>50-100</td>
</tr>
<tr>
<td>4</td>
<td>Saluran Pengelak Banjir</td>
<td>20-50</td>
</tr>
<tr>
<td>5</td>
<td>Tanggul Sungai</td>
<td>10-20</td>
</tr>
<tr>
<td>6</td>
<td>Drainase/Irigasi</td>
<td>5-10</td>
</tr>
</tbody>
</table>

(Sumber: Ir. Suwanto M. Ms. Diktat Morfologi Sungai) Berdasarkan kriteria diatas, penulis mengambil Q₉₀ adalah Q₅₀ₐth dan Q₉₀normal adalah Q₂ₙₐth. Untuk Q₉₀normal, penulis mengambil Q₂ₙₐth karena dari hasil perhitungan, debit dominan yang akan melewati kawasan ini adalah Q₂ₙₐth. Perkiraan/ peluang debit Q₂ₙₐth, sebagai berikut:

- \(P = \frac{1}{T} \times 100\% = \frac{1}{2} \times 100\% = 50\% \)

Artinya bahwa dalam rentang waktu 2 tahun akan terjadi debit yang sama atau lebih besar dari debit yang dihitung dengan peluang terjadinya adalah 50%.

[Diagram Trapesium]

Gambar 4.4 Desain penampang Trapesium
Rumus:
Penampang Saluran Trapesium
\[Q = A \cdot V \]
\[A = (b + mh) \cdot h \]
\[P = b + 2h \sqrt{1 + m^2} \]
\[R = \frac{A}{P} \]
\[V = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2} \]

Dimana:
- \(Q \) = Debit (m³/detik)
- \(V \) = Kecepatan aliran rata-rata (m/detik)
- \(n \) = Koefisien kekasaran manning
- \(R \) = Jari-jari hidrolis (m)
- \(P \) = Keliling basah (m)
- \(m \) = Talud
- \(A \) = Luas keliling basah (m²)
- \(I \) = Kemiringan saluran

4.4.1 Perencanaan Dimensi Penampang

Data desain yaitu:

a. Penampang: Rencana aliran untuk \(Q_{50th} \) = 254,05 m³/dtk

b. Kemiringan sungai pada lokasi studi (I) = 0,0058

Direncanakan yaitu:

- Lebar (b) = 30 m
- Koef. Manning (n) = 0,030
- Talud (m) = 1 : 1

- Menghitung tinggi air (h) yaitu:

Tinggi \(h_1 \) didapat dengan menggunakan cara Trial and error:

Pada \(h = 0,50 \)

- Menentukan luas penampang (A)
 \[A = (b + m \cdot h) \cdot h = (30 + 1 \times 0.50) \times 0.50 = 15.25 \]
Menentukan keliling basah penampang (P)

\[P = b + 2h\sqrt{1 + m^2} = 30 + 2 \times 0.50 \times \sqrt{1 + 1^2} = 31.41 \]

Menentukan jari-jari hidrolis (R)

\[R = \frac{A}{P} = \frac{15.25}{31.41} = 0.49 \]
\[R^{2/3} = 0.62 \]

Menentukan kecepatan aliran rata-rata (V)

\[V = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2} = 33.33 \times 0.62 \times 0.076 = 1.56 \]

Nilai debit yang didapatkan pada h = 0.3

\[Q = A \times V = 15.25 \times 1.56 = 23.79 \text{ m}^3/\text{dtk} \]

<table>
<thead>
<tr>
<th>h (m)</th>
<th>A (m2)</th>
<th>P (m)</th>
<th>R$^{2/3}$ (m)</th>
<th>I$^{1/2}$</th>
<th>V (m/dt)</th>
<th>Q (m3/dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>15.25</td>
<td>31.41</td>
<td>0.62</td>
<td>0.076</td>
<td>1.56</td>
<td>23.79</td>
</tr>
<tr>
<td>1.00</td>
<td>31</td>
<td>32.82</td>
<td>0.96</td>
<td>0.076</td>
<td>2.44</td>
<td>75.59</td>
</tr>
<tr>
<td>1.50</td>
<td>47.25</td>
<td>34.23</td>
<td>1.24</td>
<td>0.076</td>
<td>3.14</td>
<td>148.38</td>
</tr>
<tr>
<td>2.00</td>
<td>64</td>
<td>35.64</td>
<td>1.48</td>
<td>0.076</td>
<td>3.74</td>
<td>239.51</td>
</tr>
<tr>
<td>2.10</td>
<td>67.41</td>
<td>35.92</td>
<td>1.52</td>
<td>0.076</td>
<td>3.85</td>
<td>259.79</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)

Dari perhitungan di atas didapatkan tinggi h = 2.10 m, sehingga:

\[A = (b + m \cdot h) \cdot h \]
\[= (35 + 1 \times 2.10) \times 2.10 \]
\[= 67.41 \text{ m}^2 \]

\[P = b + 2h\sqrt{1 + m^2} \]
\[= 35 + 2 \times 2.10\sqrt{1 + 1^2} \]
\[= 35.92 \text{ m} \]

\[R = \frac{A}{P} = \frac{67.41}{35.92} = 1.88 \text{ m} \]

\[R^{2/3} = 1.52 \text{ m} \]

\[V = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2} \]
\[= \frac{1}{0.030} \times 1.52 \times 0.0058^{1/2} \]
\[= 3.85 \text{ m/detik} \]
Q = A . V

= 67,41 x 3,85 = 259,79 m³/dtk

= 259,79 m³/dtk \(>Q_{\text{desain}} = 254,05 \text{ m}^3/\text{dtk} \ldots \text{ok!}\)

Maka tinggi Penampang untuk \(Q_{\text{desain}} = 254,05 \text{ m}^3/\text{dtk}\) adalah \(h = 2,10 \text{ m}\).

Tinggi tanggul jagaan \((f) = 0,80 \text{ m}\) (Buku Sosrodarsono, 1995:87)

Tinggi keseluruhan tanggul \((H) = h + f\)

= 2,10 + 0,80

= 2,90 m

4.5 Perhitungan Perkuatan Tebing

4.5.1 Menghitung kedalaman Gerusan

Dalam pemasangan pasangan di dasar sungai perlu di perhitungkan kedalaman gerusan akibat debit yang lewat sehingga di peroleh angka aman penempatannya. Kedalaman gerusan diperkirakan dengan persamaan yang ditemukan oleh Lacey 1930 (kp 02 halaman 104)

\[
R = 0,47 \left(\frac{Q}{f}\right)^{1/3}
\]

\[f = 1,76 \times d_{m}^{0,5}\]

\[y_{ms} = 0,47\]

dimana :

\(R\) = kedalaman gerusan dibawah permukaan air banjir (m)

\(d_m\) = rata-rata diameter material dasar (mm)

\(y_{ms}\) =Kedalaman gerusan dari muka air (m)

\[Q = 254,05 \text{ m}^3/\text{det}\]

\(b = 30 \text{ m}\)

\(h = 2,90 \text{ m}\)

Diameter \(D_{50} = 0,35 \text{ mm}\)

Gerusan \(f = 1,76 \times 0,35^{0,5}\)

\(f = 1,04\)

\[R = 0,47 \times \left(\frac{Q}{f}\right)^{1/3}\]

\[= 0,47 \times \left(\frac{254,05}{1,04}\right)^{1/3} = 2,94 \text{ m}\]
Tinggi muka air (h) = 2,10 m
Dalam gerusan = R - h
= 2.94 – 2.10
Sehingga dalam gerusan = 0.84 m ≈ 0,9 m

4.5.2 Menghitung Stabilitas Perkuatan Tebing
Menghitung stabilitas perkuatan tebing bertujuan untuk memeriksa
stabilitas perkuatan tebing terhadap guling dan geser serta memeriksa tegangan
tanah yang timbul akibat gaya yang ditimbulkan oleh beban konstruksi.

Gaya-gaya yang berkerja antara lain:
1. Akibat Beban Sendiri
2. Akibat Gaya Gempa
3. Akibat Tekanan Tanah dan Beban Merata

Data-data kriteria perencanaan:

a. Jenis Tanah = Pasir
b. Berat Jenis Pasangan Batu = 2.2 t/m³
c. Berat Jenis Beton = 2.2 t/m³
d. Berat Jenis Beton Bertulang = 2.4 t/m³
e. Berat Jenis Air (γ_w) = 1 t/m3

f. Berat Jenis Tanah (γ_s) = 1,78 kg/m3

g. Sudut Geser Tanah (θ) = 33°

h. Titik A = Titik Guling

(Sumber: Kriteria Perencanaan 06 Irigasi)

4.5.2.1 Akibat Beban Sendiri dan akibat beban gempa

Beban sendiri perkuatan tebing adalah berat yang diakibatkan oleh bangunannya. Beban sendiri perkuatan tebing tergantung kepada bahan yang digunakan untuk membuat bangunan perkuatan tebing tersebut adalah beton bertulang dengan berat jenis $\gamma = 2,4$ t/m3 dan pasangan batu kali dengan berat jenis $\gamma = 2,2$ t/m3.

Gambar 4.6 Akibat beban sendiri dan akibat beban gempa

Perhitungan pembebanan akibat beban sendiri:

- Luas $W_1 = P \times L$

 $= 0,10 \times 1,2$

 $= 0,12$ m2

- Luas $W_4 = \frac{1}{2}$ Alas x Tinggi

 $= \frac{1}{2} 0,35 \times 0,50$

 $= 0,08$ m2
Besar Gaya \(W_1 \) = Luas \(W_1 \) x BJ Beton
\[
= 0,12 \times 2,2
= 0,26
\]
Terhadap Titik A (Titik tumpu)

Panjang Lengan \(W_1 = 0,60 \) m (gambar 4.7)

Momen = Gaya x Panjang Lengan
\[
= 0,26 \times 0,60 = 0,16 \text{ t.m}
\]

Perhitungan Selanjutnya ditabelkan tabel 4.30

<table>
<thead>
<tr>
<th>GAYA</th>
<th>LUAS</th>
<th>(\Gamma)</th>
<th>BESAR GAYA</th>
<th>TERHADAP TITIK O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m²</td>
<td>t/m³</td>
<td>ton</td>
<td>PANJANG LENGAN</td>
</tr>
<tr>
<td>W1</td>
<td>0,12</td>
<td>2,2</td>
<td>0,26</td>
<td>0,60</td>
</tr>
<tr>
<td>W2</td>
<td>1,69</td>
<td>2,4</td>
<td>4,06</td>
<td>0,50</td>
</tr>
<tr>
<td>W3</td>
<td>2,68</td>
<td>2,2</td>
<td>5,9</td>
<td>2,45</td>
</tr>
<tr>
<td>W4</td>
<td>0,08</td>
<td>2,4</td>
<td>0,19</td>
<td>4,78</td>
</tr>
<tr>
<td>W5</td>
<td>0,32</td>
<td>2,4</td>
<td>0,77</td>
<td>5,22</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11,18</td>
<td></td>
<td></td>
<td>24,8</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)

Gaya yang diakibatkan oleh gempa harus diperhitungkan terhadap kekuatan bangunan. Gaya gempa ini bekerja ke arah yang berbahaya dengan garis kerja melewati titik bangunan dalam mendatar. Pada Peta Zona Gempa Indonesia dapat dilihat pembagian wilayah gempa yang berbeda.

Koefisien gempa dapat dihitung dengan menggunakan rumus :
\[
E = \frac{ad}{q}
\]
\[
ad = Z \cdot ac \cdot V
\]

Dimana :

\(K \) = Koefisien gempa
\(ad \) = Percepatan gempa desain (m/dt²)
\(ac \) = Percepatan gempa dasar (m/dt²)
\(n \) = Faktor koreksi pengaruh jenis tanah setempat
\(Z \) = Koefisien zona gempa
\(q \) = Percepatan Gravitasi (980cm/dt²)
\(m \) = Koefisien untuk jenis tanah
Diketahui:

\(n = 0,87 \) Lapisan
\(m = 1,05 \) Diluvial
\(ac = 90 \) Periodeulang 10 tahun (Kp 06 Hal: 70)

\(Z = 1,2 \) (gambar zone E)
\(g = 981 \text{ cm/dt}^2 \)

(Sumber: Kriteriaperencanaanirigasi KP 06)

1) \(ad = n \times (ac \times z)^m = 0,87 \times (90 \times 1,2)^{1,05} = 118,74 \text{ cm/dt}^2 \)

2) \(E = \frac{ad}{g} = \frac{118,74}{981} = 0,12 \)

3) Besargaya (W) = 0,18 t

4) Gaya gempa = \(E \times W \)
\(= 0,12 \times 0,26 \)
\(= 0,03 \) t

5) Terhadaptitik A
 - Panjang Lengan = 0,05 m
 - Momen = Gaya gempa \(\times \) Panjanglengan
\(= 0,03 \times 0,05 \)
\(= 0,001 \) t.

Perhitungan Selanjutnya ditabelkan tabel 4.31

<table>
<thead>
<tr>
<th>GAYA</th>
<th>KOEFISIEN GEMPA (E)</th>
<th>GAYA BERAT (ton)</th>
<th>GAYA GEMPA (ton)</th>
<th>TERHADAP TITIK O (m)</th>
<th>MOMEN (t.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>0,12</td>
<td>0,26</td>
<td>0,03</td>
<td>0,05</td>
<td>0,001</td>
</tr>
<tr>
<td>E2</td>
<td>0,12</td>
<td>4,06</td>
<td>0,49</td>
<td>0,50</td>
<td>0,14</td>
</tr>
<tr>
<td>E3</td>
<td>0,12</td>
<td>5,9</td>
<td>0,71</td>
<td>2,45</td>
<td>1,74</td>
</tr>
<tr>
<td>E4</td>
<td>0,12</td>
<td>0,19</td>
<td>0,03</td>
<td>4,78</td>
<td>0,14</td>
</tr>
<tr>
<td>E5</td>
<td>0,12</td>
<td>0,77</td>
<td>0,09</td>
<td>4,65</td>
<td>0,42</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11,18</td>
<td>1,35</td>
<td>2,44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Sumber: Perhitungan)
4.5.2.2 Akibat Tekanan Tanah dan Beban Merata

Gaya-gaya yang timbul akibat tekanan tanah dapat dihitung dengan menggunakan rumus:

\[P = \frac{1}{2} \cdot \gamma' \cdot L^2 \cdot K_a \]

Dimana:

- \(P \) = Gaya akibat tekanan tanah (t)
- \(K_a \) = Tekanan tanah aktif
- \(\gamma' \) = Berat jenis tanah efektif (t/m³)
- \(\gamma_s \) = Berat jenis tanah (t/m³)
- \(\gamma_w \) = Berat jenis air (t/m³)
- \(A \) = Titik guling

Gambar 4.7 Akibat tekanan tanah dan beban merata

1) \(\gamma' = \gamma_s - \gamma_w \)
 = 1,78 - 1
 = 0,78

2) Tekanan tanah aktif
 \(K_a = \tan^2 (45 - \phi/2) \)
 \(= \tan^2 (45 - 33/2) \)
 \(= 0,29 \)
Menghitung Tekanan Tanah dan Beban Terbagi Rata

\[\alpha = 45^\circ \rightarrow \varnothing = 33^\circ \]

\[\cos \alpha = 0,707 \]
\[\sin \alpha = 0,707 \]
\[\tan \alpha = 1 \]

\[x_1 = \frac{1.9}{\tan \alpha} + 1 = \]
\[= \frac{1.9}{1} + 1 = 2.9 \text{ m} \]

\[x_2 = \frac{1.27}{\tan \alpha} + 1 = \]
\[= \frac{1.27}{1} + 1 = 2.27 \text{ m} \]

\[P_{a1} = q \times h \times K_a \]
\[= 0.75 \times 3.80 \times 0.29 \]
\[= 0.83 \text{ ton} \]

\[P_{a2} = \frac{1}{2} \times \gamma' \times h'^2 \times K_a \]
\[= \frac{1}{2} \times 0.78 \times 3.80^2 \times 0.29 \]
\[= 1.63 \text{ ton} \]

\[P_{h1} = P_{a1} \times \cos \alpha \]
\[= P_{a1} \times \cos(45) \]
\[= 0.83 \times 0.707 \]
\[= 0.59 \text{ ton} \]

\[P_{v1} = P_{a1} \times \sin \alpha \]
\[= 0.83 \times \sin(45) \]
\[= 0.83 \times 0.707 \]
\[= 0.59 \text{ ton} \]
\[
\begin{align*}
\text{Ph2} &= \text{Pa2} \times \cos\alpha \\
&= \text{Pa2} \times \cos(45) \\
&= 1,63 \times 0,707 \\
&= 1,15 \text{ton}
\end{align*}
\]

\[
\begin{align*}
\text{Pv2} &= \text{Pa2} \times \sin\alpha \\
&= \text{Pa2} \times \sin(45) \\
&= 1,63 \times 0,707 \\
&= 1,15 \text{ ton}
\end{align*}
\]

\[
\begin{align*}
\text{Ph3} &= \gamma' \times h \times ka \\
&= 0,78 \times 4,90 \times 0,29 \\
&= 1,11 \text{ ton}
\end{align*}
\]

\[
\begin{align*}
\text{Ph4} &= \frac{1}{2} \times \gamma' \times h^2 \times Ka \\
&= \frac{1}{2} \times 0,78 \times 1,10^2 \times 0,29 \\
&= 0,14 \text{ ton}
\end{align*}
\]

Perhitungan Selanjutnya ditabelkan tabel 4.32

<table>
<thead>
<tr>
<th>no</th>
<th>momen</th>
<th>Gaya</th>
<th>lengan momen</th>
<th>momen tahan</th>
<th>momen guling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>momen</td>
<td>V</td>
<td>h</td>
<td>x1</td>
<td>x2</td>
</tr>
<tr>
<td>1</td>
<td>ph1</td>
<td>0,59</td>
<td></td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pv1</td>
<td>0,59</td>
<td></td>
<td>1,27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ph2</td>
<td>1,15</td>
<td></td>
<td></td>
<td>1,27</td>
</tr>
<tr>
<td>4</td>
<td>pv2</td>
<td>1,15</td>
<td></td>
<td></td>
<td>2,9</td>
</tr>
<tr>
<td>5</td>
<td>ph3</td>
<td>1,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ph4</td>
<td>0,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>1,74</td>
<td>2,99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)
Resume Perhitungan tabel 4.33

<table>
<thead>
<tr>
<th>no</th>
<th>Uraian</th>
<th>BESAR GAYA</th>
<th>MOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>BERAT SENDIRI</td>
<td>11,18</td>
<td>24,8</td>
</tr>
<tr>
<td>2</td>
<td>TEKANAN TANAH DAN BEBAN TERBAGI RATA</td>
<td>1,74</td>
<td>2,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,97</td>
<td>3,33</td>
</tr>
<tr>
<td>3</td>
<td>GAYA GEMPA</td>
<td>1,35</td>
<td>2,44</td>
</tr>
<tr>
<td></td>
<td>JUMLAH</td>
<td>12,92</td>
<td>4,34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,77</td>
<td>5,77</td>
</tr>
</tbody>
</table>

(Sumber : Perhitungan)

- **Kontrol Terhadap Guling**
 \[Sf = \frac{MT}{MG} \geq 1,5 \]
 \[= \frac{28,77}{5,77} \geq 1,5 = 4,9 \geq 1,5 \ldots \text{OK! (Aman Terhadap Guling)} \]

- **Kontrol Terhadap Geser**
 \[Sf = \frac{\Sigma V \times 0,7}{\Sigma H} \geq 1,5 \]
 \[= \frac{12,92 \times 0,7}{4,34} \geq 1,5 = 2,08 \geq 1,5 \ldots \text{OK! (Aman Terhadap Geser)} \]