PRARANCANGAN PABRIK NANO SILICA DARI PASIR SILIKA DENGAN KAPASITAS PRODUKSI 42.000 TON/TAHUN

Oleh : Maulana Agzevi Alfath 1610017411025

Diajukan untuk melengkapi tugas dan memenuhi syarat guna mencapai gelar sarjana Pada Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Bung Hatta

> JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS BUNG HATTA PADANG 2021

JURUSAN TEKNIK KIMIA FAKULTAS TERNOLOGI INDUSTRI – UNIVERSITAS BUNG HATTA Kampus III – J. Galah Mada, Gunung Pangihun, telp. (0751) 54257 Padang

LEMBAR PENGESAHAN SKRIPSI

PRA RANCANGAN PABRIK NANOSILICA DARI PASIR SILICA DENGAN KAPASITAS 42.000 TON/TAHUN

OLEH :

Maulana Agzevi Alfath (1610017411025)

Disetujui oleh :

Pembimbing 1

Ellyta Sari, S.T., M.T

Pembimbing 2

Dr. Pasymi, S.T, M.T

Diketahui oleh :

Fakultas Teknologi Industri

Dekan

Prof. Dr. Eng. Reni Desmiarti, S.T., M.T

Jurusan Teknik Kimia

Ketua

Dr. Firdaus, S.T. M.T

Dipindai dengan CamScanner

JURUSAN TEKNIK KIMIA

FAKULTAS TEKNOLOGI INDUSTRI - UNIVERSITAS BUNG HATTA Kampus III JI. Gajah Mada Gunung Pangilun, telp. (0751) 54257 Padaog

PENGESAMAN REVISI LAPORAN SKRIPSI/PRA RANCANGAN PABRIK

Maulana Agzevi Alfath : 7 Agustus 2021

: 1610017411025

Jabatan	Nama/NIK/NIP	Та
Ketua	Ellyia Sari, S.T., M.T	Ht.
Anggota	Dr. Maria Ulfah, S.T, M.T	1
	Dr. Firdaus, S.T., M.T	1

Diketahui Oleh:

Pembimbing 2

Pembimbing 1

Ellyta Sari, S.T., M.T.

nda tangan

Dr. Pasymi, S.T, M.T

Dipindai dengan CamScanner

Jurusan Teknik Kimia Fakultas Teknologi Industri UNIVERSITAS BUNG HATTA

Kampus III .Jl. Gajah Mada No.19 Padang, Telp (0751) 7054257 Pes. 131

BERITA ACARA SIDANG TUGAS AKHIR

No: 121.m/SK-AK.10/FTI-TK/VIII-2021

Pada hari Sabtu tanggal Tujuh Bulan Agustus Tahun Dua Ribu Dua Puluh Satu, telah dilangsungkan Sidang Tugas Akhir (Perancangan Pabrik) Program Strata Satu (S-1) di Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Bung Hatta, terhadap :

1.	Nama/NPM	:	Maulana Agzevi Alfath / 1610017411025
2.	Jurusan	:	Teknik Kimia
3.	Program Studi	:	Teknik Kimia Strata Satu
4.	Judul Tugas Akhir	:	Pra Rancangan Pabrik NanoSilica Dari Pasir silika Dengan Kapasitas 42.000 Ton/Tahun
5.	Pembimbing I	:	Ellyta Sari, S.T., M.T.
6.	Pembimbing II	:	Dr. Pasymi, ST. MT.
7.	Tanggal / Waktu Ujian	:	7 Agustus 2021 / 13.30 - 15.00 WIB
8.	Ruang Ujian	:	Ruang Sidang Teknik Kimia
9.	Nilai Sidang Tugas Akhir	i.	Angka; Huruf A / A ⁻ / B+ B/B ⁻ /C+/ C / D
10.	Prediket Lulus	:	

TEAM PENGUJI:

No.	Nama	Jabatan	🖉 Tanda Tangan
1.	Ellyta Sari, ST. MT.	Ketua	1. Allyts
2.	Dr. Firdaus, ST. MT.	Anggota	2. Mint
3.	Dr. Maria Ulfah, ST. MT.	Anggota	3,12-

Demikianlah Berita Acara ini dikeluarkan agar dipergunakan seperlunya.

KNOLOG Mengetahui Dekan Fakultas Teknologi Industri -07-

Prof. Dr. Eng. Reni Desmiarti, ST. MT.

Dikeluarkan : Di Padang : 7 Agustus 2021 Tanggal Jurusan Teknik Kimia Ketua,

Dr. Firdaus, ST., MT.

INTISARI

Pabrik nanosilica dari pasir silika dirancang dengan kapasitas produksi 42.000 Ton/Tahun. Bahan baku yang digunakan dalam pembuatan nanosilica adalah pasir silika. Pabrik Nanosilica dari pasir silika ini akan didirikan di Kota Padang, Provinsi Sumatra Barat. Hal ini mengacu dengan kapasitas bahan baku yang besar dan diikuti oleh Analisa SWOT yang mendukung di lokasi tersebut. Pabrik ini beroperasi selama 330 hari per tahun. Proses pembuatan nanosilica dari pasir silika ini melalui tiga tahapan proses utama yaitu Proses Persiapan Bahan Baku

, Proses Pembentukan natrium metasilikat, Proses Pemurnian. Hasil analisa ekonomi menunjukan bahwa pabrik ini layak untuk didirikan dengan jumlah investasi sebesar US\$ 31.148.035,94 yang diperoleh dari pinjaman bank 50% dan modal sendiri 50%. Laju Pengembalian Modal (ROR) sebesar 61%, waktu pengembalian modal (POT) adalah 1 tahun 8 bulan 4 hari dan Titik Impas (BEP) sebesar 13%.

KATA PENGANTAR

Puji dan syukur penulis ucapkan kehadirat Allah SWT, karena telah memberikan kesempatan kepada kita untuk dapat menuntut ilmu di muka bumi ini, sehingga pada kesempatan ini berkat keridha'an dan bantuan-Nya penulis telah menyelesaikan Laporan Seminar Tugas Akhir yang berjudul Pra rancangan Pabrik *Nanosilica* dari *Pasir Silika* dengan Kapasitas Produksi 42.000 Ton/Tahun.

Adapun tujuan penulisan Laporan Seminar Tugas Akhir ini adalah dalam rangka memenuhi salah satu syarat akademis yang harus dipenuhi di Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Bung Hatta.

Pembuatan Laporan Seminar Tugas Akhir ini tidak terlepas dari dukungan dan bantuan dari berbagai pihak. Untuk itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada :

- 1. Ibu Prof. Dr.Eng Reni Desmiarti, ST., M.T., selaku Dekan Fakultas Teknologi Industri Universitas Bung Hatta Padang.
- 2. Bapak Dr. Firdaus, ST., M.T., selaku Ketua Jurusan Teknik Kimia Universitas Bung Hatta Padang
- 3. Ibu Ellyta Sari, ST,M.T, selaku Pembimbing I yang telah memberikan arahan dan membagi pengetahuannya hingga penulis dapat menyelesaikan tugas akhir ini.
- 4. Bapak Dr. Pasymi, S.T M.T selaku Pembimbing II yang telah memberikan arahan dan membagi pengetahuannya sehingga penulis dapat menyelesaikan tugas akhir ini.
- 5. Seluruh dosen Teknik Kimia Universitas Bung Hatta yang telah memberikan ilmu pengetahuannya untuk Laporan Seminar Tugas Akhir.
- 6. Kedua orang tua penulis yang telah memberi dukungan moral dan material kepada penulis.
- 7. Rekan-rekan Angkatan 2016 di Teknik Kimia yang telah meluangkan waktunya untuk berdiskusi dan bertukar pendapat.
- 8. Kepada teman-teman penulis yang selalu mendukung penulis dari jarak jauh dan selalu sabar mendengar keluhan penulis selama masa kuliah ini
- 9. Terimakasih kepada Tri Sandi Ramadhan, S.T , Febrian Pratama, S.T , Lukman Hakim, S.T , Zulfitri Ghazali, S.T dan teman-teman yang lainnya yang telah memotivasi saya untuk penyelesaian tugas akhir ini.

Penulis menyadari tugas akhir ini masih jauh dari kesempurnaan meskipun penulis telah berusaha semaksimal mungkin. Oleh karena itu, penulis mengharapkan kritikan dan saran dari pembaca demi perbaikan karya tulis ini. Semoga tugas akhir ini bermanfaat bagi kita semua. Aamiin.

Padang, Juli 2021

Penulis

DAFTAR ISI

KATA PENGANTAR ·····		i
DAFTAR ISI ·····		iii
DAFTAR TABEL ·····		viii
DAFTAR GAMBAR		xii
DAFTAR LAMPIRAN		xiv
BAB I. PENDAHULUAN		1
1.1. Latar Belakang ······		1
1.2. Kapasitas Rancangan		2
1.3. Pabrik Nano Silika di Indonesia Beserta Ka	pasitasnya ·····	4
1.4. Penyebaran Pasir Silika di Indonesia		4
1.5. Lokasi Pabrik		7
BAB II. TINJAUAN PUSTAKA		9
2.1. Silika (SiO ₂)		9
2.1.1. Teknologi nano (nanotechnology) ···		10
2.1.2. Asal Usul Nanosilika		10
2.1.3. Struktur Nano Silika		10
2.2. Tinjauan Proses ······		11
2.3. Sifat Fisik dan Kimia		15
2.3.1. Bahan Baku ·····		15
2.3.2. Bahan Penunjang ······		16
2.4. Spesifikasi Bahan Baku dan Produk		17
2.4.1. Spesifikasi Bahan Baku		17
2.4.2. Spesifikasi Produk		18

BA	B III. T	AHAPAN DAN DESKRIPSI PROSES ······	19
3.1.	Tahap	oan Proses dan Blok Diagram	19
	3.1.1.	Tahapan Proses ·····	19
	3.1.2.	Blok Diagram ·····	19
3.2.	Deskı	ripsi Proses dan <i>Flowsheet</i>	21
	3.2.1.	Deskripsi Proses	21
	3.2.2.	Flowsheet Proses Produksi	21
BA	B IV. N	ERACA MASSA DAN ENERGI	22
4.1.	Nerac	ca Massa·····	22
	4.1.1.	Tumbling (TM-151)·····	22
	4.1.2.	Mixing Tank (MT-1401)·····	23
	4.1.3.	Tangki HCl (THCL-2101)	24
	4.1.4.	Centrifuge 1 (C-1501) ·····	25
	4.1.5.	Reactor 1 (R-2301)·····	26
	4.1.6.	Tangki NaOH (TNaOH-2201)·····	26
	4.1.7.	<i>Reactor 2</i> (R-2302)·····	27
4.2.	Nerac	ca Energi ·····	28
	4.2.1.	Heater (HE-3701)	29
	4.2.2.	Mixing Tank (MT-3402) ·····	30
	4.2.3.	Reaktor 1 (R-2301	30
	4.2.4.	Reaktor 2 (R-2302)	· 31
	4.2.5.	Spray Dryer (SD-3801)	• 32
BA	B V. UI	FILITAS	33
5.1.	Unit l	Penyediaan Listrik	33
5.2.	Unit	Penyediaan Air ·····	34
	5.2.1.	Air Sanitasi ·····	35
	5.2.2.	Air Proses dan Air Umpan Boiler	38
	5.2.3.	Unit Pembangkit Steam·····	43

5.3.	Deaerat	or	44
5.4.	Unit Pe	ngolahan Limbah ·····	45
5.5.	Penang	anan Limbah Gas ·····	46
BA	B VI. SI	PESIFIKASI PERALATAN	49
6.1.	Spesif	ikasi Peralatan Utama	49
	6.1.1.	Warehouse	49
	6.1.2.	Screw Conveyor 1	50
	6.1.3.	Screw Conveyor 2 ·····	50
	6.1.4.	Screw Conveyor 3 ·····	51
	6.1.5.	Mixing Tank ·····	52
	6.1.6.	Tangki NaOH ·····	53
	6.1.7.	Tangki HCl ·····	53
	6.1.8.	Reactor 1	53
	6.1.9.	Reactor 2	54
	6.1.10.	Centrifuge 1 ·····	57
	6.1.11.	Centrifuge 2 ·····	57
	6.1.12.	Ultrafiltrasi	58
	6.1.13.	Spray Dryer	58
	6.1.14.	Storage Tank Nanosilica	58
	6.1.15.	Pompa Slurry	60
	6.1.16.	Tumbling Mill ·····	60
6.2.	Spesif	ikasi Peralatan Utilitas	61
	6.2.1.	Pompa Air Sungai (P-1001)·····	61
	6.2.2.	Pompa Peralatan Utilitas	62
	6.2.3.	Bak Penampung Air Sungai (BP-1101)	63
	6.2.4.	Tangki Pelarutan Alum (TP-1201)·····	63
	6.2.5.	Tangki Pelarutan Kapur Tohor (TP-1202)	70
	6.2.6.	Tangki Pelarutan Kaporit (TP-1203)	71
	6.2.7.	Unit Pengolahan Raw Water (BPR-2102) ·····	72

6.2.8. Sand Filter (SF-2301)	73
6.2.9. Bak Penampungan Air Bersih (BP-2103)	74
6.2.10. <i>Mixedbad Tank</i> (MBT-3401)	74
6.2.11. Tangki Air Demin (TDW-3501) ·····	75
BAB VII. TATA LETAK PABRIK DAN K3LH (KESEHATAN,	
KESELAMATAN KERJA DAN LINGKUNGAN HIDUP)·······	76
7.1. Tata Letak Pabrik	76
7.2. Kesehatan dan Keselamatan Kerja Lingkungan Hidup	78
7.2.1. Keselamatan Kerja	78
7.2.2. Sebab – Sebab Terjadinya Kecelakaan	79
7.2.3. Peningkatan Usaha Keselamatan Kerja	80
7.2.4. Jenis-Jenis dan Tindakan Untuk Menghindari atau Mengurangi	
Kecelakaan Kerja	80
7.2.5. Daftar Peraturan Pemerintah tentang Keselamatan dan Kesehatan K	lerja
	81
7.2.6. Alat Pelindung Diri (APD)	82
7.2.7. Macam – Macam Alat Pelindung Diri	83
BAB VIII. ORGANISASI PERUSAAHAAN	87
8.1. Struktur Organisasi	87
8.1.1. Bentuk Organisasi ······	87
8.1.2. Tugas dan Wewenang	88
8.1.3. Jumlah Karyawan ·····	142
8.1.4. Sistem Kerja	143
8.2. Sistem Kepegawaian dan Gaji	144
BAB IX. ANALISA EKONOMI ·····	148
9.1. Total Capital Investment (TCI)	149
9.2. Biaya Produksi (Total Production Cost)	149
9.3. Harga Jual (Total Sales) ······	150

9.4. Tijauan Kelayakan Pabrik	150
BAB X. TUGAS KHUSUS······	153
10.1. Pendahuluan ······	153
10.2. Teori Pengantar Tugas Khusus ·····	153
10.2.1. Screw Conveyor ·····	153
10.2.2. Centrifuge ·····	153
10.2.3. Reaktor CSTR ·····	154
10.2.4. Spray Dryer	154
10.2.5. Mixing Tank	155
10.3. Ruang Lingkup Lingkungan ·····	155
10.4. Rancangan ·····	155
10.4.1. Screw Conveyor ·····	155
10.4.2. Centrifuge ·····	156
10.4.3. Reaktor CSTR ·····	157
10.4.4. Spray Dryer	162
<i>10.4.5.</i> Mixing Tank	165
10.5. Kesimpulan Rancangan	169
BAB XI. KESIMPULAN DAN SARAN	171
11.1. Kesimpulan ·····	171
11.2. Saran	172

DAFTAR PUSTAKA

LAMPIRAN

DAFTAR TABEL

Tabel 1.1 Harga Bahan Baku dan Produk······	3
Tabel 1.2 Nilai impor nanosilica	3
Tabel 1.3 Pabrik Nano Silika di Indonesia Beserta Kapasitasnya	4
Tabel 1.4 Kapasitas bahan baku pasir silica di Indonesia	5
Tabel 1.5 Analisa SWOT Kota Padang	6
Tabel 1.6 Analisa SWOT Kabupaten Indragili Hilir	8
Tabel 2.1 Perbandingan antara ketiga metode·····	15
Tabel 4.1 Neraca Massa Tumbling Mill (TM-151)······	23
Tabel 4.2 Neraca Massa Mixing Tank (MT-1401)	23
Tabel 4.3 Neraca Massa Tangki Pelarutan HCl (THCL-2101)	24
Tabel 4.4 Neraca Massa Centrifuge 1 (C-1501)	25
Tabel 4.5 Neraca Massa Reaktor 1 (R-2301)	26
Tabel 4.6 Neraca Massa Tangki NaOH (TNaOH-2201)	27
Tabel 4.7 Neraca Energi Reactor 2 (R-2302)	28
Tabel 4.8 Nilai Kapasitas Panas Komponen Padat ·····	28
Tabel 4.9 Nilai Panas Pembentukan Komponen	29
Tabel 4.10 Neraca Energi Heater (HE-3701)	29
Tabel 4.11 Neraca Energi Mixing Tank (MT-3402)	30
Tabel 4.12 Reaktor 1 (R-2301)	31
Tabel 4.13 Neraca Energi Reaktor (R-2302)	31
Tabel 4.14 Neraca Energi Spray Dryer (SD-3141)	32

Tabel 5.1 Kebutuhan Listrik	33
Tabel 5.2 Kualitas Air Sungai Dumai	34
Tabel 5.3 Syarat Air Sanitasi	35
Tabel 5.4 Media dalam sand filter	38
Tabel 5.5 Kebutuhan Air Sanitasi	38
Tabel 5.6 Kebutuhan Air Proses	38
Tabel 5.7 Persyaratan Air Umpan Boiler	39
Tabel 5.8 Kehilangan Efisiensi Termal Akibat Lapisan Kerak pada Boiler	40
Tabel 5.9 Spesifikasi Resin Kation dan Anion	41
Tabel 5.11 Kebutuhan Steam	42
Tabel 5.12 Baku Mutu Air Limbah Pabrik Bioetanol	45
Tabel 6.1 Spesifikasi Warehouse·····	49
Tabel 6.2 Spesifikasi Screw Conveyor 1	50
Tabel 6.3 Spesifikasi Screw Conveyor 2	50
Tabel 6.4 Spesifikasi Screw Conveyor 3	50
Tabel 6.5 Spesifikasi Mixing Tank	52
Tabel 6.6 Spesifikasi Tangki NaOH	53
Tabel 6.7 Spesifikasi Tangki HCl	53
Tabel 6.8 Spesifikasi Reactor 1	55
Tabel 6.9 Spesifikasi Reactor 2	55
Tabel 6.10 Spesifikasi Centrifuge 1	57
Tabel 6.11 Spesifikasi Centrifuge 2·····	57

Tabel 6.12 Spesifikasi Ultrafiltrasi	58
Tabel 6.13 Spesifikasi Spray Dryer	59
Tabel 6.14 Spesifikasi Storage Tank Nanosilica	59
Tabel 6.15 Spesifikasi Pompa Slurry	60
Tabel 6.16 Spesifikasi Tumbling Mill	60
Tabel 6.17 Daya Pompa pada Peralatan Utilitas	62
Tabel 8.1 Karyawan Non Shift	142
Tabel 8.2 Karyawan Shift	143
Tabel 8.3 Waktu Kerja Karyawan Non Shift	143
Tabel 8.4 Gaji Karyawan	144
Tabel 9.1 Biaya Komponen TCI	149
Tabel 9.2 Biaya Komponen Manufacturing Cost	149
Tabel 9.3 Laba kotor dan laba bersih	150
Tabel 10.1 Spesifikasi Screw Conveyor 1	169
Tabel 10.2 Spesifikasi Centrifuge 1	169
Tabel 10.3 Spesifikasi Reactor CSTR	170
Tabel. 10.4 Spesifikasi Spray Dryer	171
Tabel. 10.5 Spesifikasi Mixing Tank······	172

DAFTAR GAMBAR

Gambar 1.1 Data Import nanosilika di Indonesia	3
Gambar 1.2 Lokasi Pabrik Kota Padang	6
Gambar 1.3 Lokasi Pabrik di Kabupaten Indragiri Hilir	7
Gambar 3.1 Blog Diagram proses pembuatan nanosilika dari pasir silika	31
Gambar 3.2 Flowshett pembuatan nanosilika dari pasir silika	32
Gambar 5.1 Blok Diagram Proses Pengolahan Air Sanitasi	35
Gambar 5.2 Lapisan Kerak pada Pipa	40
Gambar 5.3 Blok Diagram Proses Pengolahan Air Proses	41
Gambar 5.4 Proses Deaerasi di Deaerator	44
Gambar 5.5 Blok Diagram Proses Pengolahan Limbah Cair	48
Gambar 7.1 Tata Letak Lingkungan Pabrik	78
Gambar 7.2 Tata Letak Alat Pabrik	79
Gambar 7.3 Safety Helmet ·····	83
Gambar 7.4 Safety Belt	84
Gambar 7.5 Boot	84
Gambar 7.6 Safety Shoes	84
Gambar 7.7 Safety Gloves	85
Gambar 7.8 Ear Plug ·····	85
Gambar 7.9 Safety Glasses ·····	85
Gambar 7.10 Respirator ·····	86
Gambar 7.11 Face Shield	86

Gambar 7.12 Rain Coat	86
Gambar 9.1 Grafik Break Event Point (BEP)	151
Gambar 10.1 Centrifuge ·····	154
Gambar 10.2 Reaktor CSTR······	154
Gambar 10.3 Spray Dryer	155
Gambar 10.4 Mixing tank ·····	155

DAFTAR LAMPIRAN

Lampiran A Neraca Masa	LA 1
Lampiran B Neraca Energi	LB 1
Lampiran C Spesifikasi Alat	LC 1
Lampiran D Analisa Ekonomi	LD 1

DAFTAR PUSTAKA

Alibaba.com (tanggal akses 15 Januari 2021)

Badan Pusat Statistik, 2020

- Morri, Heditsugu 2003. Extraction of Silicon Dioxide from Waste Colored Glasses by Alkali Fusion Using Sodium Hydroxide. Journal of The Ceramic Society of Japan.111 (6). 376-381.
- Morri, Heditsugu. Extraction of Silicon Dioxide from Waste Colored Glasses by Alkali Fusion Using Potasium Hydroxide. Journal of The Ceramic Society of Japan.38 2003): 3461-3468.
- M. Waseem, S. Mustafa, A. Naeem, K. H. Shah, Irfan Shah And Ihsan-Ul-Haque: Synthesis And Characterization Of Silica By Sol-Gel Method. J Pak Mater Soc 2009 3 (1)
- Munasir, Ahmad Mirwan Abdullah, Triwikantoro, 2010. Sintesis Silika Amorf Dari Bahan Alam Lumpur Sidoarjo dengan Metode Kopresipitasi, Prosiding Seminar Nasional UNNES Semarang.
- Munasir, Sulton A, Triwikantoro, M. Zainuri, Darminto., (2013). Synthesis of Silica Nanopowder from Slopeng Natural Sands via Alkalifussion Route., AIP Conf. Proc. 1555, 28 (2013); doi: 10.1063/1.4820986
- P.K. Jal, M. Sudarshan, A. Saha, Sabita Patel, B.K. Mishra, (2004). "Synthesis and characterization of nanosilica prepared by precipitation method." Colloids and Surfaces A: Physicochem. Eng. Aspects 240: 6.
- Samsudin Affandi, Heru Setyawan, Sugeng Winardi, Agus Purwanto, Ratna Balgis . A Facile Method For Production Of High- Purity Silica Xerogels From Bagasse Ash. Advanced Powder Technology 20 (2009) 468–472
- Van, Hoek., Winter, R., 2002. "Amorphous silica and the intergranular structure of nanocrystalline silica". Phys Chem Glass 43C 80.
- Yasuhiko Arai, Hiroyo Segawa ,Kazuaki Yoshida. Synthesis Of Nano Silica Particles For Polishing Prepared By Sol–Gel Method. Journal Of Sol-Gel Science And Technology 32, (2004) 79–83
- Carl Branan., 2002, "Rules of Thumb for Chemical Engineering", Gulf Professional Publishing. Houston.

- Carl L.Yaws., 1997, "Handbook of Chemical Compound Data for Proces Safety",3 ed., Gulf Professional Publishing. Houston .
- Coulson, J.M. and Richardson, J.F., 1983, "Chemical Engineering Volume 6", Pergamon Press, Oxford.
- David ,M. Himmelblau., 2004, "Basic Principles and Calculations in Chemical Engineering", 7 ed., Professional Technical Reference., New Jersey.
- Fogler, H.S., 1999, "Elements of Chemical Reaction Engineering", 3 ed., Prentice Hall, Inc., New Jersey.
- Incropera, F.P. and De Witt, D.P., 1981, "Fundamentals of Heat Transfer", John Wiley and Sons, Inc., New York.
- Kern, D.Q., 1950, "Process Heat Transfer", McGraw-Hill Book Company, Inc., New York.
- King, C.J., 1982, "Separation Processes", 2 ed., McGraw-Hill Publishing Book Company, Ltd., New Delhi.
- Kirk, R.E and othmer, D.F., 1977, "Encyclopedia of Chemical Technology", 18 ed., John Wiley & Sons, New York
- Ludwig, G.E., 1968, "Applied Design for Chemical and Petrochemical Plants", vol. 2, 2 ed., Gulf Publishing Co., Houston
- Levenspiel, O., 1999, "Chemical Reactor Engineering", 3 ed., John Wiley and Sons, Inc., New York.
- Marlin, T. E., 2000, "Process Control : Designing Processes and Control Systems for Dynamic Performance", 2 ed., McGraw-Hill Book Company, Inc., Singapore.
- Perry, R.H., 1997, "Perry's Chemical Engineers' Handbook", 7 ed., McGraw-Hill Book Company, Inc., New York.
- Peters, M.S., Timmerhaus, K.D., and West, R.E.,2003, "Plant Design and Economics for Chemical Engineers", 5 ed., McGraw-Hill Companies, Inc., New York.

- Powell, S.T., 1954, "Water Conditioning for Industry", McGraw-Hill Book Company, New York
- Shahrokhi and Baghmisheh., 2005, "Modeling, simulation and control of methanol synthesis fixed-bed reactor", Sharif University of Technology, Iran.
- Smith, J.M. and Van Ness, H.C., 1959, "Introduction to Chemical Engineering Thermodynamics", 2 ed., McGraw-Hill Book Company, Inc., New York.
- Smith, J.M., 1981, "Chemical Engineering Kinetics", 3 ed., McGraw-Hill Book Company, Inc., New York.
- Smith, J.M., Van Ness, H.C., and Abbott, M.M., 1996, "Introduction to Chemical Engineering Thermodynamics", 5 ed., McGraw-Hill Book Company, Inc., New York.
- Smith. R., 1995, "Chemical Process Design", International ed., McGraw-Hill Book Co., Singapore.
- Stephanopoulos, G., 1984, " Chemical Process Control", Prentice Hall, Inc., new Jersey.
- U.S. Patent 2008/0194879 A1 (14 Agustus 2008), BASE SE: Ludwlgshafen (DE)
- Walas, S.M., 1988, "Chemical Process Equipment", Butterworth Publishers, Stoneham, MA, USA
- Warren L.McCabe., 1993, "Unit Operations of Chemical Engineering", 5 ed., McGraw-Hill, Inc., New York.